Difference between revisions of "Measure"
m (→Definition) |
m |
||
Line 1: | Line 1: | ||
− | {{Extra Maths}}Not to be confused with [[Pre-measure]] | + | {{Refactor notice}} |
+ | ==Definition== | ||
+ | {{Extra Maths}}A (positive)<ref group="Note">What else is there? ''Measures, Integrals and Martingales'' mentions this</ref> measure<ref name="MIAM">Measures, Integrals and Martingales - Rene L. Schilling</ref> on a [[Measurable space|measurable space]] {{M|(X,\mathcal{A})}} (where recall {{M|X}} is a set and {{M|\mathcal{A} }} is a [[Sigma-algebra|{{sigma|algebra}}]] on that set) is a mapping: | ||
+ | * {{MM|1=\mu:\mathcal{A}\rightarrow[0,\infty]}} | ||
+ | That satisfies: | ||
+ | # {{M|1=\mu(\emptyset)=0}} | ||
+ | # For any finite [[Sequence|sequence]] of [[Pairwise disjoint|pairwise disjoint]] sets {{M|1=(A_i)_{i=1}^n\subseteq\mathcal{A} }} we have {{M|1=\mu\left(\udot_{i=1}^nA_i\right)=\sum^n_{i=1}\mu(A_i)}} | ||
+ | # For any [[Countably infinite|countably infinite]] sequence of pairwise disjoint sets {{M|1=(A_n)_{n=1}^\infty\subseteq\mathcal{A} }} we have {{M|1=\mu\left(\udot_{n=1}^\infty A_n\right)=\sum_{n=1}^\infty\mu(A_n)}} | ||
+ | |||
+ | ==Terminology== | ||
+ | {{Todo|Find references}} | ||
+ | ===Of sets=== | ||
+ | {| class="wikitable" border="1" | ||
+ | ! Term | ||
+ | ! Definition | ||
+ | ! Comment | ||
+ | |- | ||
+ | ! Finite | ||
+ | | A set {{M|A\in\mathcal{A} }} is finite if {{M|\mu(A)<\infty}} - we say "{{M|A}} has finite measure" | ||
+ | | | ||
+ | |- | ||
+ | ! {{Sigma|finite}} | ||
+ | | A set {{M|A\in\mathcal{A} }} is {{sigma|finite}} if <math>\exists(A_n)_{n=1}^\infty:[A\subseteq\cup^\infty_{n=1}A_n\wedge(\forall A_n,\ \mu(A_n)<\infty)]</math> | ||
+ | | | ||
+ | |} | ||
+ | ===Of measures=== | ||
+ | {| class="wikitable" border="1" | ||
+ | |- | ||
+ | ! Term | ||
+ | ! Definition | ||
+ | ! Comment | ||
+ | |- | ||
+ | ! Complete measure | ||
+ | | {{M|\forall A\in\mathcal{A} }} we have <math>[\mu(A)=0\wedge B\subset A]\implies B\in \mathcal{A}</math> | ||
+ | | | ||
+ | |- | ||
+ | ! Finite measure | ||
+ | | {{M|\mu}} is a finite measure if every set {{M|\in\mathcal{A} }} is finite. | ||
+ | | | ||
+ | |- | ||
+ | ! {{Sigma|finite measure}} | ||
+ | | {{M|\mu}} is {{sigma|finite}} if every set {{M|\in\mathcal{A} }} is {{sigma|finite}} | ||
+ | | | ||
+ | |} | ||
+ | ==Contrast with pre-measure== | ||
+ | '''Note:''' the family <math>A_n</math> must be pairwise disjoint | ||
+ | {| class="wikitable" border="1" | ||
+ | |- | ||
+ | ! Property | ||
+ | ! Measure | ||
+ | ! Pre-measure | ||
+ | |- | ||
+ | | | ||
+ | | <math>\mu:\mathcal{A}\rightarrow[0,\infty]</math> | ||
+ | | <math>\mu_0:R\rightarrow[0,\infty]</math> | ||
+ | |- | ||
+ | | | ||
+ | | <math>\mu(\emptyset)=0</math> | ||
+ | | <math>\mu_0(\emptyset)=0</math> | ||
+ | |- | ||
+ | | Finitely additive | ||
+ | | <math>\mu\left(\bigudot^n_{i=1}A_i\right)=\sum^n_{i=1}\mu(A_i)</math> | ||
+ | | <math>\mu_0\left(\bigudot^n_{i=1}A_i\right)=\sum^n_{i=1}\mu_0(A_i)</math> | ||
+ | |- | ||
+ | | Countably additive | ||
+ | | <math>\mu\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu(A_n)</math> | ||
+ | | If <math>\bigudot^\infty_{n=1}A_n\in R</math> then <math>\mu_0\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu_0(A_n)</math> | ||
+ | |} | ||
+ | ==Properties== | ||
+ | Here {{M|(X,\mathcal{A},\mu)}} is a [[Measure space|measure space]], and {{M|A,B\in\mathcal{A} }} | ||
+ | {{:Pre-measure/Properties in common with measure}} | ||
+ | ==Related theorems== | ||
+ | * [[A function is a measure iff it measures the empty set as 0, disjoint sets add, and it is continuous from below (with equiv. conditions)]] | ||
+ | ==See also== | ||
+ | * [[Pre-measure]] | ||
+ | ==Notes== | ||
+ | <references group="Note"/> | ||
+ | ==References== | ||
+ | <references/> | ||
+ | {{Definition|Measure Theory}} | ||
+ | |||
+ | =Old page= | ||
+ | Not to be confused with [[Pre-measure]] | ||
Revision as of 01:55, 26 July 2015
Contents
[hide]Definition
\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }A (positive)[Note 1] measure[1] on a measurable space (X,\mathcal{A}) (where recall X is a set and \mathcal{A} is a \sigma-algebra on that set) is a mapping:
- \mu:\mathcal{A}\rightarrow[0,\infty]
That satisfies:
- \mu(\emptyset)=0
- For any finite sequence of pairwise disjoint sets (A_i)_{i=1}^n\subseteq\mathcal{A} we have \mu\left(\udot_{i=1}^nA_i\right)=\sum^n_{i=1}\mu(A_i)
- For any countably infinite sequence of pairwise disjoint sets (A_n)_{n=1}^\infty\subseteq\mathcal{A} we have \mu\left(\udot_{n=1}^\infty A_n\right)=\sum_{n=1}^\infty\mu(A_n)
Terminology
TODO: Find references
Of sets
Term | Definition | Comment |
---|---|---|
Finite | A set A\in\mathcal{A} is finite if \mu(A)<\infty - we say "A has finite measure" | |
\sigma-finite | A set A\in\mathcal{A} is \sigma-finite if \exists(A_n)_{n=1}^\infty:[A\subseteq\cup^\infty_{n=1}A_n\wedge(\forall A_n,\ \mu(A_n)<\infty)] |
Of measures
Term | Definition | Comment |
---|---|---|
Complete measure | \forall A\in\mathcal{A} we have [\mu(A)=0\wedge B\subset A]\implies B\in \mathcal{A} | |
Finite measure | \mu is a finite measure if every set \in\mathcal{A} is finite. | |
\sigma-finite measure | \mu is \sigma-finite if every set \in\mathcal{A} is \sigma-finite |
Contrast with pre-measure
Note: the family A_n must be pairwise disjoint
Property | Measure | Pre-measure |
---|---|---|
\mu:\mathcal{A}\rightarrow[0,\infty] | \mu_0:R\rightarrow[0,\infty] | |
\mu(\emptyset)=0 | \mu_0(\emptyset)=0 | |
Finitely additive | \mu\left(\bigudot^n_{i=1}A_i\right)=\sum^n_{i=1}\mu(A_i) | \mu_0\left(\bigudot^n_{i=1}A_i\right)=\sum^n_{i=1}\mu_0(A_i) |
Countably additive | \mu\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu(A_n) | If \bigudot^\infty_{n=1}A_n\in R then \mu_0\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu_0(A_n) |
Properties
Here (X,\mathcal{A},\mu) is a measure space, and A,B\in\mathcal{A}
Related theorems
See also
Notes
- Jump up ↑ What else is there? Measures, Integrals and Martingales mentions this
- Jump up ↑ Sometimes stated as monotone (it is monotone in Measures, Integrals and Martingales in fact!)
References
- Jump up ↑ Measures, Integrals and Martingales - Rene L. Schilling
Old page
Not to be confused with Pre-measure
Definition
A \sigma-ring \mathcal{A} and a countably additive, extended real valued. non-negative set function \mu:\mathcal{A}\rightarrow[0,\infty] is a measure. That is:
- \mu(\emptyset)=0
- \mu\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu(A_n)
- \mu(S)\ge 0\ \forall S\in\mathcal{A}
Contrast with pre-measure
Note: the family A_n must be pairwise disjoint
Property | Measure | Pre-measure |
---|---|---|
\mu:\mathcal{A}\rightarrow[0,\infty] | \mu_0:R\rightarrow[0,\infty] | |
\mu(\emptyset)=0 | \mu_0(\emptyset)=0 | |
Finitely additive | \mu\left(\bigudot^n_{i=1}A_i\right)=\sum^n_{i=1}\mu(A_i) | \mu_0\left(\bigudot^n_{i=1}A_i\right)=\sum^n_{i=1}\mu_0(A_i) |
Countably additive | \mu\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu(A_n) | If \bigudot^\infty_{n=1}A_n\in R then \mu_0\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu_0(A_n) |
Terminology
These terms apply to pre-measures to, rather \mathcal{A} you would use the ring the pre-measure is defined on.
Complete measure
A measure is complete if for A\in\mathcal{A} we have [\mu(A)=0\wedge B\subset A]\implies B\in \mathcal{A}
Finite
A set A\in\mathcal{A} is finite if \mu(A)<\infty - we say "A has finite measure"
Finite measure
\mu is a finite measure if every set \in\mathcal{A} is finite.
Sigma-finite
A set A\in\mathcal{A} is \sigma-finite if \exists(A_n)_{n=1}^\infty:[A\subseteq\cup^\infty_{n=1}A_n\wedge(\forall A_n,\ \mu(A_n)<\infty)]
Sigma-finite measure
\mu is \sigma-finite if every set \in\mathcal{A} is \sigma-finite
Total
If \mathcal{A} is a \sigma-algebra rather than a ring (that is X\in\mathcal{A} where X is the space) then we use
Totally finite measure
If X is finite
Totally sigma-finite measure
If X is \sigma-finite
Examples
Trivial measures
Given the Measurable space (X,\mathcal{A}) we can define:
\mu:\mathcal{A}\rightarrow\{0,+\infty\} by \mu(A)=\left\{\begin{array}{lr} 0 & \text{if }A=\emptyset \\ +\infty & \text{otherwise} \end{array}\right.
Another trivial measure is:
v:\mathcal{A}\rightarrow\{0\} by v(A)=0 for all A\in\mathcal{A}