Difference between revisions of "Random variable"
m |
m |
||
(2 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
A '''Random variable''' is a [[Measurable map|measurable map]] from a [[Probability space|probability space]] to any [[Measurable space|measurable space]] | A '''Random variable''' is a [[Measurable map|measurable map]] from a [[Probability space|probability space]] to any [[Measurable space|measurable space]] | ||
− | Let {{M|(\Omega,\mathcal{A},\mathbb{P})}} be a [[Probability space|probability space]] and let {{M| | + | Let {{M|(\Omega,\mathcal{A},\mathbb{P})}} be a [[Probability space|probability space]] and let {{M|X:(\Omega,\mathcal{A})\rightarrow(V,\mathcal{U}) }} be a random variable |
− | |||
Then: | Then: | ||
− | {{ | + | <math>X^{-1}(U\in\mathcal{U})\in\mathcal{A}</math>, but anything <math>\in\mathcal{A}</math> is {{M|\mathbb{P} }}-measurable! So we see: |
+ | |||
+ | <math>\mathbb{P}(X^{-1}(U\in\mathcal{U}))\in[0,1]</math> which we may often write as: <math>\mathbb{P}(X=U)</math> for simplicity (see [[Mathematicians are lazy]]) | ||
+ | |||
+ | ==Notation== | ||
+ | Often a measurable space that is the domain of the RV will be a probability space, given as <math>(\Omega,\mathcal{A},\mathbb{P})</math>, and we may write either: | ||
+ | * {{M|X:(\Omega,\mathcal{A},\mathbb{P})\rightarrow(V,\mathcal{U}) }} | ||
+ | * {{M|X:(\Omega,\mathcal{A})\rightarrow(V,\mathcal{U}) }} | ||
+ | |||
+ | With the understanding we write {{M|\mathbb{P} }} in the top one only because it is convenient to remind ourselves what probability measure we are using. | ||
+ | |||
+ | ==Pitfall== | ||
+ | Note that it is only guaranteed that <math>X^{-1}(U\in\mathcal{U})\in\mathcal{A}</math> but it is not guaranteed that <math>X(A\in\mathcal{A})\in\mathcal{U}</math>, it may sometimes be the case. | ||
+ | |||
+ | For example consider the trivial [[Sigma-algebra|{{sigma|algebra}}]] <math>\mathcal{U}=\{\emptyset,V\}</math> | ||
+ | |||
+ | '''However''' If you consider <math>X:(\Omega,\mathcal{A},\mathbb{P})\rightarrow(V,\{\emptyset,V\})</math> then this is just the random variable "something happens" underneath it all, or if <math>V=\{2,\cdots,12\}</math> the event that the sum of the scores is <math>\ge 2</math>. | ||
+ | |||
+ | ==Example== | ||
+ | ===Discrete random variable=== | ||
+ | {{Begin Example}} | ||
+ | Recall the roll two die example from [[Probability space|probability spaces]], we will consider the RV {{M|X}} = the sum of the scores | ||
+ | {{Begin Example Body}} | ||
+ | Recall the die example from [[Probability space|probability spaces]] (which is restated less verbosely here), there: | ||
+ | {|class="wikitable" border="1" | ||
+ | |- | ||
+ | ! Component | ||
+ | ! Definition | ||
+ | |- | ||
+ | | {{M|\Omega}} | ||
+ | | <math>\Omega=\{(a,b)|\ a,b\in\mathbb{N},\ a,b\in[0,6]\}</math> | ||
+ | |- | ||
+ | | {{M|\mathcal{A} }} | ||
+ | | <math>\mathcal{A}=\mathcal{P}(\Omega)</math> | ||
+ | |- | ||
+ | | {{M|\mathbb{P} }} | ||
+ | | <math>\mathbb{P}(A) = \frac{1}{36}|A|</math> | ||
+ | |} | ||
+ | |||
+ | Let us define the '''Random variable''' that is the sum of the scores on the die, that is <math>X:(\Omega,\mathcal{A},\mathbb{P})\rightarrow(\{2,\cdots,12\},\mathcal{P}(\{2,\cdots,12\}))</math>. | ||
+ | |||
+ | It should be clear that <math>(\{2,\cdots,12\},\mathcal{P}(\{2,\cdots,12\}))</math> is a [[Measurable space|measurable space]] however we need not consider a measure on it. | ||
+ | |||
+ | Writing {{M|X}} out explicitly is hard but there are two parts to it: | ||
+ | |||
+ | '''Warning - the first bullet point is a suspected claim''' | ||
+ | |||
+ | * We can look at what generates a space, we need only consider the single events really, that is to say: | ||
+ | *: <math>X(A\in\mathcal{A})\cup X(B\in\mathcal{A})=X(A\cup B\in\mathcal{A})</math>, so we need only look at {{M|X}} of the individual events | ||
+ | {{Todo|Prove this}} | ||
+ | * We can write it more explicitly as: | ||
+ | *: <math>X(A\in\mathcal{A})=\{a+b|(a,b)\in A\}</math> | ||
+ | {{End Example Body}} | ||
+ | {{End Example}} | ||
+ | |||
+ | ====Example of pitfall==== | ||
+ | Take <math>X:(\Omega,\mathcal{P}(\Omega),\mathbb{P})\rightarrow(V,\mathcal{U})</math>, if we define <math>\mathcal{U}=\{\emptyset,V\}</math> then clearly: | ||
+ | |||
+ | <math>X(\{(1,2)\})=\{3\}\notin\mathcal{U}</math>. Yet it is still measurable. | ||
+ | |||
+ | So an example! <math>\mathbb{P}(X^{-1}(\{5\}))=\mathbb{P}(X=5)=\mathbb{P}(\{(1,4),(4,1),(2,3),(3,2)\})=\frac{4}{36}=\frac{1}{9}</math> | ||
{{Definition|Measure Theory|Statistics}} | {{Definition|Measure Theory|Statistics}} |
Latest revision as of 14:41, 20 March 2015
Contents
[hide]Definition
A Random variable is a measurable map from a probability space to any measurable space
Let (Ω,A,P) be a probability space and let X:(Ω,A)→(V,U) be a random variable
Then:
X−1(U∈U)∈A
P(X−1(U∈U))∈[0,1]
Notation
Often a measurable space that is the domain of the RV will be a probability space, given as (Ω,A,P)
- X:(Ω,A,P)→(V,U)
- X:(Ω,A)→(V,U)
With the understanding we write P in the top one only because it is convenient to remind ourselves what probability measure we are using.
Pitfall
Note that it is only guaranteed that X−1(U∈U)∈A
For example consider the trivial σ-algebra U={∅,V}
However If you consider X:(Ω,A,P)→(V,{∅,V})
Example
Discrete random variable
Recall the roll two die example from probability spaces, we will consider the RV X = the sum of the scores
Example of pitfall
Take X:(Ω,P(Ω),P)→(V,U)
X({(1,2)})={3}∉U
So an example! P(X−1({5}))=P(X=5)=P({(1,4),(4,1),(2,3),(3,2)})=436=19