Difference between revisions of "Quotient topology"
m (→Theorems) |
m |
||
Line 26: | Line 26: | ||
===Stronger than continuity=== | ===Stronger than continuity=== | ||
If we had {{M|1=\mathcal{K}=\{\emptyset,Y\} }} then {{M|p}} is automatically continuous (as it is surjective), the point is that {{M|\mathcal{K} }} is the [[Topology#Finer.2C_Larger.2C_Stronger|largest topology]] we can define on {{M|Y}} such that {{M|p}} is continuous | If we had {{M|1=\mathcal{K}=\{\emptyset,Y\} }} then {{M|p}} is automatically continuous (as it is surjective), the point is that {{M|\mathcal{K} }} is the [[Topology#Finer.2C_Larger.2C_Stronger|largest topology]] we can define on {{M|Y}} such that {{M|p}} is continuous | ||
− | |||
− | |||
===Theorems=== | ===Theorems=== | ||
Line 54: | Line 52: | ||
{{End Proof}} | {{End Proof}} | ||
{{End Theorem}} | {{End Theorem}} | ||
+ | This theorem hints at the [[Characteristic property of the quotient topology]] | ||
==Quotient space== | ==Quotient space== |
Revision as of 12:54, 7 April 2015
Note: Motivation for quotient topology may be useful
Contents
[hide]Definition of Quotient topology
If (X,J)
The quotient topology is actually a topology
Quotient map
Let (X,J) and (Y,K) be topological spaces and let p:X→Y be a surjective map.
p is a quotient map[1] if we have U∈K⟺p−1(U)∈J
That is to say K={V∈P(Y)|p−1(V)∈J}
Also known as:
- Identification map
Stronger than continuity
If we had K={∅,Y} then p is automatically continuous (as it is surjective), the point is that K is the largest topology we can define on Y such that p is continuous
Theorems
Theorem: The quotient topology, Q is the largest topology such that the quotient map, p, is continuous
This theorem hints at the Characteristic property of the quotient topology
Quotient space
Given a Topological space (X,J) and an Equivalence relation ∼, then the map: q:(X,J)→(X∼,Q)
The topological space (X∼,Q) is the quotient space[2] where Q is the topology induced by the quotient
Also known as:
- Identification space