Difference between revisions of "Notes:Distribution of the sample median"
m (Saving work) |
m (Added prediction for n=9) |
||
(11 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{ProbMacros}}{{M|\newcommand{\O}[0]{\mathcal{O} } \newcommand{\M}[0]{\mathcal{M} } \newcommand{\Q}[0]{\mathcal{Q} } \newcommand{\Min}[1]{\text{Min}\left({#1}\right)} \newcommand{\d}[0]{\mathrm{d} } }} | {{ProbMacros}}{{M|\newcommand{\O}[0]{\mathcal{O} } \newcommand{\M}[0]{\mathcal{M} } \newcommand{\Q}[0]{\mathcal{Q} } \newcommand{\Min}[1]{\text{Min}\left({#1}\right)} \newcommand{\d}[0]{\mathrm{d} } }} | ||
__TOC__ | __TOC__ | ||
+ | ==Findings== | ||
+ | I've found results for two sample sizes, {{M|n\eq 3}} and {{M|n\eq 5}}, they are respectively: | ||
+ | * {{M|F(r)^2\big[3-2F(r)\big]}} for {{M|n\eq 3}}, and | ||
+ | * {{M|F(r)^3\big[10-15F(r)+6F(r)^2\big]}} for {{M|n\eq 5}} | ||
+ | ** I've experimentally verified this one | ||
+ | * {{M|F(r)^4\big(-20F(r)^3+70F(r)^2-84F(r)+35\big)}} for {{M|n\eq 7}} | ||
+ | Unfortunately it seems prior results are of no help | ||
+ | * {{M|F(r)^5\big(70F(r)^4-315F(r)^3+540F(r)^2-420F(r)+126\big)}} '''''PREDICTED''''' for {{M|n\eq 9}} | ||
+ | ==Important results== | ||
+ | # {{M|\P{\text{Median}(X_1,\ldots,X_{2m+1})\le r}\eq\Pcond{X_1\le\cdots\le X_{m+1}\le r}{X_1\le\cdots\le X_{2m+1} } }} | ||
+ | #: {{MM|\eq \frac{\P{X_1\le\cdots\le X_{m+1}\le\Min{r,X_{m+2} }\le X_{m+2}\le X_{m+3}\le\cdots\le X_{2m+1} } }{\frac{1}{(2m+1)!} } }} | ||
+ | #: {{MM|\eq \big((2m+1)!\big)\P{X_1\le\cdots\le X_{m+1}\le\Min{r,X_{m+2} }\le X_{m+2}\le X_{m+3}\le\cdots\le X_{2m+1} } }} | ||
+ | #: {{MM|\eq \lim_{t\rightarrow+\infty}\Bigg(\big((2m+1)!\big)\P{X_1\le\cdots\le X_{m+1}\le\Min{r,X_{m+2} }\le X_{m+2}\le X_{m+3}\le\cdots\le X_{2m+1}\le t }\Bigg) }} | ||
+ | #: {{MM|\eq\frac{(2m+1)!}{m!}\lim_{t\rightarrow+\infty}\Bigg[\int^t_{-\infty}f(x_{2m+1})\left(\int^{x_{2m+1} }_{-\infty}f(x_{2m})\left(\cdots\int^{x_{m+3} }_{-\infty}f(x_{m+2})\left(\int^{\Min{r,x_{m+2} } }_{-\infty} f(x_{m+1})F(x_{m+1})^m\d x_{m+1}\right)\d x_{m+2}\cdots\right)\d x_{2m}\right)\d x_{2m+1}\Bigg] }} | ||
+ | |||
==Problem overview== | ==Problem overview== | ||
Let {{M|X_1,\ldots,X_{2m+1} }} be a sample from a population {{M|X}}, meaning that the {{M|X_i}} are {{iid}} [[random variables]], for some {{M|m\in\mathbb{N}_{0} }}. We wish to find: | Let {{M|X_1,\ldots,X_{2m+1} }} be a sample from a population {{M|X}}, meaning that the {{M|X_i}} are {{iid}} [[random variables]], for some {{M|m\in\mathbb{N}_{0} }}. We wish to find: | ||
Line 12: | Line 27: | ||
* {{M|\mathcal{O}:\eq X_1\le\cdots\le X_{2m+1} }} - representing the order part | * {{M|\mathcal{O}:\eq X_1\le\cdots\le X_{2m+1} }} - representing the order part | ||
* {{M|\mathcal{M}:\eq X_1\le\cdots\le X_{m+1}\le r}} - representing the median part | * {{M|\mathcal{M}:\eq X_1\le\cdots\le X_{m+1}\le r}} - representing the median part | ||
− | * {{M|\mathcal{Q}:\eq\P{\text{Median}(X_1,\ldots,X_{2m+1})\le r}\eq\Pcond{\mathcal{ | + | * {{M|\mathcal{Q}:\eq\P{\text{Median}(X_1,\ldots,X_{2m+1})\le r}\eq\Pcond{\mathcal{M} }{\mathcal{O} } }} - representing the question |
Line 45: | Line 60: | ||
** {{MM|\int^t_{-\infty}f(z)\left(\int^z_{-\infty}f(y)\left(\int^{\Min{r,y} }_{-\infty} f(x)\d x\right)\d y\right)\d z}} | ** {{MM|\int^t_{-\infty}f(z)\left(\int^z_{-\infty}f(y)\left(\int^{\Min{r,y} }_{-\infty} f(x)\d x\right)\d y\right)\d z}} | ||
*** if {{M|t>r}} then the minimum will get involved (for some {{M|z}}s anyway) and limit it to {{M|r}}, otherwise it'll always stay under {{M|r}} - of course in practice (as we'll take {{M|t\rightarrow\infty}}) this will certainly happen. | *** if {{M|t>r}} then the minimum will get involved (for some {{M|z}}s anyway) and limit it to {{M|r}}, otherwise it'll always stay under {{M|r}} - of course in practice (as we'll take {{M|t\rightarrow\infty}}) this will certainly happen. | ||
+ | ==Progression: 1== | ||
+ | We are evaluating: {{MM|\P{X_1\le\cdots\le X_{m+1}\le\Min{r,X_{m+2} }\le X_{m+2}\le X_{m+3}\cdots\le X_{2m+1}\le t } }} (our answer is {{MM|\big((2m+1)!\big)\times}} of this as {{M|t\rightarrow\infty}} ), the full integral follows: | ||
+ | * {{MM|\int^t_{-\infty}f(x_{2m+1})\left(\int^{x_{2m+1} }_{-\infty}f(x_{2m})\left(\cdots\int^{x_{m+3} }_{-\infty}f(x_{m+2})\left(\int^{\Min{r,x_{m+2} } }_{-\infty} f(x_{m+1})<!-- | ||
+ | |||
+ | MARKER: (int^x_m+1 ... \d x_m starts here | ||
+ | I want to put an underbrace around it. | ||
+ | |||
+ | --><!--\underbrace-->{\left(\int^{x_{m+1} }_{-\infty}f(x_{m} )\left(\cdots\int^{x_2}_{-\infty}f(x_1)\d x_1\cdots\right)\d x_m\right)}<!-- | ||
+ | |||
+ | Marker: \d x_m ends here | ||
+ | |||
+ | |||
+ | -->\d x_{m+1}\right)\d x_{m+2}\cdots\right)\d x_{2m}\right)\d x_{2m+1} }} | ||
+ | We operate on the inner bit: | ||
+ | * {{MM|{\int^{x_{m+1} }_{-\infty}f(x_{m} )\left(\cdots\int^{x_2}_{-\infty}f(x_1)\d x_1\cdots\right)\d x_m}\eq \frac{1}{m!}F(x_{m+1})^m}} | ||
+ | We substitute this back in to yield: | ||
+ | * {{MM|\frac{1}{m!}\int^t_{-\infty}f(x_{2m+1})\left(\int^{x_{2m+1} }_{-\infty}f(x_{2m})\left(\cdots\int^{x_{m+3} }_{-\infty}f(x_{m+2})\left(\int^{\Min{r,x_{m+2} } }_{-\infty} f(x_{m+1})F(x_{m+1})^m\d x_{m+1}\right)\d x_{m+2}\cdots\right)\d x_{2m}\right)\d x_{2m+1} }} | ||
+ | ===Conclusion of progression 1=== | ||
+ | We see here that | ||
+ | ==Progression: 2== | ||
+ | This'll involve induction and dealing with the {{M|\text{Min}()}} will be "tricky", both for practice and induction we will consider the special cases {{M|m\eq 1}} and {{M|m\eq 2}} by evaluating: | ||
+ | * {{M|m\eq 1}} yields {{MM|I_1:\eq\frac{1}{1!}\int^t_{-\infty} f(x_3)\left(\int^{\Min{r,x_3} }_{-\infty}f(x_2)F(x_2) \d x_2\right)\d x_3}}, by case analysis: | ||
+ | *# if {{M|t\le r}} then {{M|x_3\le t\le r}} or {{M|x_3\le r}} over the entire domain of interest, so {{M|\Min{r,x_3}\eq x_3}} over the entire domain, giving: | ||
+ | *#* {{MM|I_1\eq\frac{1}{1!}\int^t_{-\infty}f(x_3)\left(\int^{x_3}_{-\infty}f(x_2)F(x_2)\d x_2\right)\d x_3}} | ||
+ | *#** We now use the corollary below to see: | ||
+ | *#*** {{MM|I_1\eq\frac{1}{2!}\int^t_{-\infty}f(x_3)F(x_3)^2\d x_3}} | ||
+ | *#***: {{MM|\eq\frac{1}{3!}F(t)^3}} | ||
+ | *# if {{M|t\ge r}} then we split {{M|(-\infty,t]}} into {{M|(-\infty,r)}} and {{M|[r,t]}}, giving: | ||
+ | *#* {{MM|I_1\eq\frac{1}{1!}\left[\int^r_{-\infty} f(x_3)\left(\int^{\Min{r,x_3} }_{-\infty}f(x_2)F(x_2) \d x_2\right)\d x_3+\int_r^tf(x_3)\left(\int^{\Min{r,x_3} }_{-\infty}f(x_2)F(x_2) \d x_2\right)\d x_3\right]}} | ||
+ | *#*: {{MM|\eq\frac{1}{1!}\left[\int^r_{-\infty}f(x_3)\left(\int^{x_3}_{-\infty}f(x_2)F(x_2) \d x_2\right)\d x_3+\int_r^tf(x_3)\left(\int^r_{-\infty}f(x_2)F(x_2) \d x_2\right)\d x_3\right]}} | ||
+ | *#** We now use the required corollary immediately below to yield: | ||
+ | *#**: {{MM|I_1\eq\frac{1}{1!}\left[\int^r_{-\infty}f(x_3)\cdot\frac{1}{2}F(x_3)^2\d x_3+\int_r^tf(x_3)\cdot\frac{1}{2}F(r)^2\d x_3\right]}} | ||
+ | *#**: {{MM|\eq\frac{1}{2!}\left[\frac{1}{3}F(r)^3+F(r)^2\int^t_rf(x_3)\d x_3\right]}}, note that: {{MM|\int^t_rf(x)\d x\eq\int_{-\infty}^tf(x)\d x-\int_{-\infty}^rf(x)\d x}} {{MM|\eq F(t)-F(r)}} | ||
+ | *#**: {{MM|\eq\frac{1}{2!}F(r)^2\left[\frac{1}{3}F(r)+\big(F(t)-F(r)\big)\right]}}, note that: {{MM|F(t)-F(r)\eq\frac{3F(t)-3F(r)}{3} }} which we'll use next | ||
+ | *#**: {{MM|\eq\frac{1}{2!}F(r)^2\left[\frac{3F(t)-2F(r)}{3}\right]}} | ||
+ | *#**: {{MM|\eq\frac{1}{3!}F(r)^2\big(3F(t)-2F(r)\big)}} | ||
+ | It is clear that as {{M|t\rightarrow\infty}} that we end up with {{MM|I_1\eq\frac{1}{3!}F(r)^2\big(3-2F(r)\big)}} | ||
+ | |||
+ | Thus: {{MM|\P{X_1\le X_2\le\Min{r,X_3}\le X_3}\eq\frac{1}{3!}F(r)^2\big(3-2F(r)\big)}} | ||
+ | |||
+ | Finally: | ||
+ | * {{MM|\Pcond{X_1\le X_2\le r}{X_1\le X_2\le X_3}\eq F(r)^2\big(3-2F(r)\big)}} | ||
+ | ===Required corollary=== | ||
+ | Recall from [[Probability of i.i.d random variables being in an order and not greater than something]] that: | ||
+ | * {{MM|\frac{1}{k!}\int^r_{-\infty}f(x)F(x)^k\d x\eq \frac{1}{(k+1)!}F(r)^{k+1} }} | ||
+ | So: | ||
+ | * {{MM|\int^r_{-\infty}f(x)F(x)^k\d x\eq \frac{1}{k+1}F(r)^{k+1} }} | ||
+ | By applying this to above (with the {{M|x_2}} integrals): | ||
+ | * {{MM|\int^r_{-\infty}f(x)F(x)^1\d x\eq \frac{1}{2}F(r)^2 }}, we then substitute this for the cases {{M|r:\eq r}} and {{M|r:\eq x_3}} | ||
+ | We'll then apply it to the {{M|x_3}} integrals. | ||
+ | ===Conclusion of progression 2=== | ||
+ | * {{MM|\Pcond{X_1\le X_2\le r}{X_1\le X_2\le X_3}\eq F(r)^2\big(3-2F(r)\big)}} | ||
+ | ==Progression: 3== | ||
+ | I am now looking at {{M|m\eq 3}}, which is 7 samples. To find this we evaluate: | ||
+ | * {{MM|\P{\text{Median}\le r}\eq\frac{7!}{3!}\lim_{t\rightarrow+\infty}\left(\int^t_{-\infty}f(x_7)\left(\int^{x_7}_{-\infty}f(x_6)\left(\int^{x_6}_{-\infty}f(x_5)\left(\int^{\Min{r,x_5} }_{-\infty}f(x_4)F(x_4)^3 \d x_4\right)\d x_5\right)\d x_6\right)\d x_7\right)}} | ||
+ | Initial work: | ||
+ | # {{MM|I_1(x_6):\eq \int^{x_6}_{-\infty}f(x_5)\left(\int^{\Min{r,x_5} }_{-\infty}f(x_4)F(x_4)^3 \d x_4\right)\d x_5\eq\left\{1514F(x6)5if x6≤r1514F(r)4(5F(x6)−4F(r))if x6≥r \right.}} - these agree if {{M|x_6\eq r}} | ||
+ | # {{MM|I_2(x_7):\eq \int^{x_7}_{-\infty}f(x_6)\left(\int^{x_6}_{-\infty}f(x_5)\left(\int^{\Min{r,x_5} }_{-\infty}f(x_4)F(x_4)^3 \d x_4\right)\d x_5\right)\d x_6\eq \int^{x_7}_{-\infty}f(x_6)I_1(x_6)\d x_6}} {{MM|\eq\frac{1}{6}\frac{1}{5}\frac{1}{4}\left\{F(x7)6if x7≤rF(r)4(10F(r)2−24F(r)F(x7)+15F(x7)2)if x7≥r \right.}} - note both parts agree if {{M|r\eq x_7}} as {{M|10+15-24\eq 1}} | ||
+ | # {{M|I_3(t)\eq}} (everything in the limit) {{MM|\eq \int^t_{-\infty} f(x_7)I_2(x_7)\d x_7}} {{MM|\eq\frac{1}{7}\frac{1}{6}\frac{1}{5}\frac{1}{4}\left\{F(t)7if t≤rF(r)4(−20F(r)3+70F(r)2F(t)−84F(r)F(t)2+35F(t)3)if t≥r \right.}} - note these agree if {{M|t\eq r}} | ||
+ | #* Clearly as {{M|t\rightarrow+\infty}} we get {{MM|I_3(t)\rightarrow\frac{1}{7}\frac{1}{6}\frac{1}{5}\frac{1}{4} F(r)^4\big(-20F(r)^3+70F(r)^2-84F(r)+35\big)}} as {{M|F(t)\rightarrow 1}} | ||
+ | |||
+ | From the top of this section: | ||
+ | * {{MM|\P{\text{Median}\le r}\eq \frac{7!}{3!} I_3(+\infty)\eq F(r)^4\big(-20F(r)^3+70F(r)^2-84F(r)+35\big)}} | ||
+ | |||
+ | |||
+ | '''Conclusion:''' | ||
+ | * {{MM|\P{\text{Median}\le r}\eq F(r)^4\big(-20F(r)^3+70F(r)^2-84F(r)+35\big)}} |
Latest revision as of 17:21, 17 December 2017
Contents
[hide]Findings
I've found results for two sample sizes, n=3 and n=5, they are respectively:
- F(r)2[3−2F(r)] for n=3, and
- F(r)3[10−15F(r)+6F(r)2] for n=5
- I've experimentally verified this one
- F(r)4(−20F(r)3+70F(r)2−84F(r)+35) for n=7
Unfortunately it seems prior results are of no help
- F(r)5(70F(r)4−315F(r)3+540F(r)2−420F(r)+126) PREDICTED for n=9
Important results
- P[Median(X1,…,X2m+1)≤r]=P[X1≤⋯≤Xm+1≤r | X1≤⋯≤X2m+1]
- =P[X1≤⋯≤Xm+1≤Min(r,Xm+2)≤Xm+2≤Xm+3≤⋯≤X2m+1]1(2m+1)!
- =((2m+1)!)P[X1≤⋯≤Xm+1≤Min(r,Xm+2)≤Xm+2≤Xm+3≤⋯≤X2m+1]
- =limt→+∞(((2m+1)!)P[X1≤⋯≤Xm+1≤Min(r,Xm+2)≤Xm+2≤Xm+3≤⋯≤X2m+1≤t])
- =(2m+1)!m!limt→+∞[∫t−∞f(x2m+1)(∫x2m+1−∞f(x2m)(⋯∫xm+3−∞f(xm+2)(∫Min(r,xm+2)−∞f(xm+1)F(xm+1)mdxm+1)dxm+2⋯)dx2m)dx2m+1]
- =P[X1≤⋯≤Xm+1≤Min(r,Xm+2)≤Xm+2≤Xm+3≤⋯≤X2m+1]1(2m+1)!
Problem overview
Let X1,…,X2m+1 be a sample from a population X, meaning that the Xi are i.i.d random variables, for some m∈N0. We wish to find:
- P[Median(X1,…,X2m+1)≤r]- the Template:Cdf of the median.
Initial work
Since the variables are independent then any ordering is as likely as any other (which I proved the long way, rather than just jumping to 1(2m+1)!
I believe the P[Median(X1,…,X2m+1)≤r]=P[X1≤⋯≤Xm+1≤r | X1≤⋯≤X2m+1]. Let us make some definitions to make this shorter.
- O:=X1≤⋯≤X2m+1 - representing the order part
- M:=X1≤⋯≤Xm+1≤r - representing the median part
- Q:=P[Median(X1,…,X2m+1)≤r]=P[M | O] - representing the question
We should also have some sort of converse, related to r≤Xm+2≤⋯X2m+1 or something.
We also have:
- An expression for P[X1≤⋯≤Xn≤r] from Probability of i.i.d random variables being in an order and not greater than something
- It's =1n!FX(r)n
- It's =1n!FX(r)n
Analysis
Let us look at X≤r and X≤Y to see what we can say if both are true (the "and")
- Claim: (X≤r∧X≤Y)⟺(X≤Min(r,Y))
- Proof:
- ⟹
- Suppose r≤Y, so Min(r,Y)=r, obviously X≤r ⟹ X≤r=Min(r,Y), so the implication holds in this case
- Suppose Y≤r, so Min(r,Y)=Y, obviously X≤Y ⟹ X≤Y=Min(r,Y), so the implication holds in this case too.
- ⟸
- We notice either Min(r,Y)=r if r≤Y, or Min(r,Y)=Y if Y≤r (slightly modify the language for the equality, it doesn't matter though really)
- Thus if r≤Y then X≤r and as r≤Y by assumption, we use the transitivity of ≤ to see X≤r≤Y thus X≤Y too - as required
- Thus if Y≤r then X≤Y and as Y≤r by assumption, we use the transitivity of ≤ to see X≤Y≤r and thus X≤r too - as required.
- So in either case, we have X≤Y and X≤r - as required
- We notice either Min(r,Y)=r if r≤Y, or Min(r,Y)=Y if Y≤r (slightly modify the language for the equality, it doesn't matter though really)
- ⟹
Problem statement
Thus we really want to find:
- P[Median(X1,…,X2m+1)≤r]=P[X1≤⋯≤Xm+1≤r | X1≤⋯≤X2m+1]
- =P[M and O]P[O]
- =((2m+1)!)P[X1≤⋯≤Xm+1≤Min(r,Xm+2)≤Xm+2≤Xm+3⋯≤X2m+1]
- Caveat:We now need: (X≤r∧X≤Y≤Z)⟹(X≤Min(r,Y)≤Y≤Z)to justify this format. Although that's arguably not that helpful for the integral.
- =P[M and O]P[O]
Initial integral
- This isn't about the median specifically, this is just looking at the specific integral.
Suppose we have a sample of length 3, X,Y,Z then we are looking at:
- P[X≤Min(r,Y)≤Y≤Z≤t] (where t will be used for a limit towards ∞ to get P[X≤Min(r,Y)≤Y≤Z] in the end), or as an integral:
- ∫t−∞f(z)(∫z−∞f(y)(∫Min(r,y)−∞f(x)dx)dy)dz
- if t>r then the minimum will get involved (for some zs anyway) and limit it to r, otherwise it'll always stay under r - of course in practice (as we'll take t→∞) this will certainly happen.
- ∫t−∞f(z)(∫z−∞f(y)(∫Min(r,y)−∞f(x)dx)dy)dz
Progression: 1
We are evaluating: P[X1≤⋯≤Xm+1≤Min(r,Xm+2)≤Xm+2≤Xm+3⋯≤X2m+1≤t]
- ∫t−∞f(x2m+1)(∫x2m+1−∞f(x2m)(⋯∫xm+3−∞f(xm+2)(∫Min(r,xm+2)−∞f(xm+1)(∫xm+1−∞f(xm)(⋯∫x2−∞f(x1)dx1⋯)dxm)dxm+1)dxm+2⋯)dx2m)dx2m+1
We operate on the inner bit:
- ∫xm+1−∞f(xm)(⋯∫x2−∞f(x1)dx1⋯)dxm=1m!F(xm+1)m
We substitute this back in to yield:
- 1m!∫t−∞f(x2m+1)(∫x2m+1−∞f(x2m)(⋯∫xm+3−∞f(xm+2)(∫Min(r,xm+2)−∞f(xm+1)F(xm+1)mdxm+1)dxm+2⋯)dx2m)dx2m+1
Conclusion of progression 1
We see here that
Progression: 2
This'll involve induction and dealing with the Min() will be "tricky", both for practice and induction we will consider the special cases m=1 and m=2 by evaluating:
- m=1 yields I1:=11!∫t−∞f(x3)(∫Min(r,x3)−∞f(x2)F(x2)dx2)dx3, by case analysis:
- if t≤r then x3≤t≤r or x3≤r over the entire domain of interest, so Min(r,x3)=x3 over the entire domain, giving:
- I1=11!∫t−∞f(x3)(∫x3−∞f(x2)F(x2)dx2)dx3
- We now use the corollary below to see:
- I1=12!∫t−∞f(x3)F(x3)2dx3
- =13!F(t)3
- =13!F(t)3
- I1=12!∫t−∞f(x3)F(x3)2dx3
- We now use the corollary below to see:
- I1=11!∫t−∞f(x3)(∫x3−∞f(x2)F(x2)dx2)dx3
- if t≥r then we split (−∞,t] into (−∞,r) and [r,t], giving:
- I1=11![∫r−∞f(x3)(∫Min(r,x3)−∞f(x2)F(x2)dx2)dx3+∫trf(x3)(∫Min(r,x3)−∞f(x2)F(x2)dx2)dx3]
- =11![∫r−∞f(x3)(∫x3−∞f(x2)F(x2)dx2)dx3+∫trf(x3)(∫r−∞f(x2)F(x2)dx2)dx3]
- We now use the required corollary immediately below to yield:
- I1=11![∫r−∞f(x3)⋅12F(x3)2dx3+∫trf(x3)⋅12F(r)2dx3]
- =12![13F(r)3+F(r)2∫trf(x3)dx3], note that: ∫trf(x)dx=∫t−∞f(x)dx−∫r−∞f(x)dx=F(t)−F(r)
- =12!F(r)2[13F(r)+(F(t)−F(r))], note that: F(t)−F(r)=3F(t)−3F(r)3which we'll use next
- =12!F(r)2[3F(t)−2F(r)3]
- =13!F(r)2(3F(t)−2F(r))
- I1=11![∫r−∞f(x3)⋅12F(x3)2dx3+∫trf(x3)⋅12F(r)2dx3]
- =11![∫r−∞f(x3)(∫x3−∞f(x2)F(x2)dx2)dx3+∫trf(x3)(∫r−∞f(x2)F(x2)dx2)dx3]
- I1=11![∫r−∞f(x3)(∫Min(r,x3)−∞f(x2)F(x2)dx2)dx3+∫trf(x3)(∫Min(r,x3)−∞f(x2)F(x2)dx2)dx3]
- if t≤r then x3≤t≤r or x3≤r over the entire domain of interest, so Min(r,x3)=x3 over the entire domain, giving:
It is clear that as t→∞ that we end up with I1=13!F(r)2(3−2F(r))
Thus: P[X1≤X2≤Min(r,X3)≤X3]=13!F(r)2(3−2F(r))
Finally:
- P[X1≤X2≤r | X1≤X2≤X3]=F(r)2(3−2F(r))
Required corollary
Recall from Probability of i.i.d random variables being in an order and not greater than something that:
- 1k!∫r−∞f(x)F(x)kdx=1(k+1)!F(r)k+1
So:
- ∫r−∞f(x)F(x)kdx=1k+1F(r)k+1
By applying this to above (with the x2 integrals):
- ∫r−∞f(x)F(x)1dx=12F(r)2, we then substitute this for the cases r:=r and r:=x3
We'll then apply it to the x3 integrals.
Conclusion of progression 2
- P[X1≤X2≤r | X1≤X2≤X3]=F(r)2(3−2F(r))
Progression: 3
I am now looking at m=3, which is 7 samples. To find this we evaluate:
- P[Median≤r]=7!3!limt→+∞(∫t−∞f(x7)(∫x7−∞f(x6)(∫x6−∞f(x5)(∫Min(r,x5)−∞f(x4)F(x4)3dx4)dx5)dx6)dx7)
Initial work:
- I1(x6):=∫x6−∞f(x5)(∫Min(r,x5)−∞f(x4)F(x4)3dx4)dx5={1514F(x6)5if x6≤r1514F(r)4(5F(x6)−4F(r))if x6≥r- these agree if x6=r
- I2(x7):=∫x7−∞f(x6)(∫x6−∞f(x5)(∫Min(r,x5)−∞f(x4)F(x4)3dx4)dx5)dx6=∫x7−∞f(x6)I1(x6)dx6=161514{F(x7)6if x7≤rF(r)4(10F(r)2−24F(r)F(x7)+15F(x7)2)if x7≥r- note both parts agree if r=x7 as 10+15−24=1
- I3(t)= (everything in the limit) =∫t−∞f(x7)I2(x7)dx7=17161514{F(t)7if t≤rF(r)4(−20F(r)3+70F(r)2F(t)−84F(r)F(t)2+35F(t)3)if t≥r- note these agree if t=r
- Clearly as t→+∞ we get I3(t)→17161514F(r)4(−20F(r)3+70F(r)2−84F(r)+35)as F(t)→1
- Clearly as t→+∞ we get I3(t)→17161514F(r)4(−20F(r)3+70F(r)2−84F(r)+35)
From the top of this section:
- P[Median≤r]=7!3!I3(+∞)=F(r)4(−20F(r)3+70F(r)2−84F(r)+35)
Conclusion:
- P[Median≤r]=F(r)4(−20F(r)3+70F(r)2−84F(r)+35)