Difference between revisions of "Covariant functor"

From Maths
Jump to: navigation, search
m
m (Discussion)
 
Line 3: Line 3:
 
{{:Covariant functor/Definition}}
 
{{:Covariant functor/Definition}}
 
==Discussion==
 
==Discussion==
 +
Given
 +
* 3 objects, {{M|X}}, {{M|Y}} and {{M|Z}} in a [[category]] {{M|\mathscr{C} }}
 +
* a (covariant) functor from {{M|\mathscr{C} }} to another category, {{M|\mathscr{D} }}
 +
**  {{M|T:\mathscr{C}\leadsto\mathscr{D} }}
 +
* morphisms {{M|f:X\rightarrow Y}}, {{M|g:Y\rightarrow Z}} and the morphism {{M|gf:X\rightarrow Z}} corresponding to the [[composition]] {{M|g\circ f}}
 +
The functor gives us "the same" diagram (in terms of objects and arrows) in the target [[category]] {{M|\mathscr{D} }}, as shown by the following [[diagram]]:
 +
{| class="wikitable" border="1"
 +
|-
 +
|<math>
 +
\xymatrix{
 +
X \ar@{-->}@(u,ul)[rrrr] \ar[rr]^{gf}="gf" \ar[dr]_f="f" \ar& & Z \ar@{-->}@(u,ul)[rrrr] & & TX \ar[rr]^{Tgf}="tgf" \ar[dr]_{Tf}="tf" & & TZ\\
 +
& Y \ar[ur]_{g}="g" \ar@{-->}@(d,dl)[rrrr] & & & & TY \ar[ur]_{Tg}="tg"
 +
\ar@{.>}@/^/ "gf";"tgf" \ar@{.>}@/_/ "f";"tf" \ar@{.>}@/^/ "g";"tg"
 +
}
 +
</math>
 +
|-
 +
! The dashed lines represent {{M|T}}'s image of objects<br/>The dotted lines are the image of morphisms under {{M|T}}
 +
|}
 +
* In this diagram the objects {{M|TX}}, {{M|TY}} and {{M|TZ}} are in a different category.
 +
 
==References==
 
==References==
 
<references/>
 
<references/>
 
{{Definition|Category Theory}}
 
{{Definition|Category Theory}}

Latest revision as of 16:27, 2 February 2016


TODO: Flesh this page out


Definition

A covariant functor, T:C (for categories C and D) is a pair of mappings[1]:

  • T:\left\{\begin{array}{rcl}\text{Obj}(C) & \longrightarrow & \text{Obj}(D)\\ X & \longmapsto & TX \end{array}\right.
  • T:\left\{\begin{array}{rcl}\text{Mor}(C) & \longrightarrow & \text{Mor}(D)\\ f & \longmapsto & Tf \end{array}\right.

Which preserve composition of morphisms and the identity morphism of each object, that is to say:

  • \forall f,g\in\text{Mor}(C)[Tfg=T(f\circ g)=Tf\circ Tg=TfTg] (I've added the \circs in to make it more obvious to the reader what is going on)
    • Where such composition makes sense. That is \text{target}(g)=\text{source}(f).
  • and \forall A\in\text{Obj}(C)[T1_A=1_{TA}]

Thus if f:X\rightarrow Y and g:Y\rightarrow Z are morphisms of C, then the following diagram commutes:

\begin{xy}\xymatrix{TX \ar[rr]^{Tgf} \ar[dr]_{Tf} & & TZ \\ & TY \ar[ur]_{Tg} & }\end{xy}

Thus the diagram just depicts the requirement that:

  • =Tgf=Tg\circ Tf
\ Note that the diagram is
basically just the "image" of

\begin{xy}\xymatrix{X \ar[rr]^{gf} \ar[dr]_{f} & & Z \\ & Y \ar[ur]_{g} & }\end{xy}
under T

Discussion

Given

  • 3 objects, X, Y and Z in a category \mathscr{C}
  • a (covariant) functor from \mathscr{C} to another category, \mathscr{D}
    • T:\mathscr{C}\leadsto\mathscr{D}
  • morphisms f:X\rightarrow Y, g:Y\rightarrow Z and the morphism gf:X\rightarrow Z corresponding to the composition g\circ f

The functor gives us "the same" diagram (in terms of objects and arrows) in the target category \mathscr{D} , as shown by the following diagram:

\xymatrix{ X \ar@{-->}@(u,ul)[rrrr] \ar[rr]^{gf}="gf" \ar[dr]_f="f" \ar& & Z \ar@{-->}@(u,ul)[rrrr] & & TX \ar[rr]^{Tgf}="tgf" \ar[dr]_{Tf}="tf" & & TZ\\ & Y \ar[ur]_{g}="g" \ar@{-->}@(d,dl)[rrrr] & & & & TY \ar[ur]_{Tg}="tg" \ar@{.>}@/^/ "gf";"tgf" \ar@{.>}@/_/ "f";"tf" \ar@{.>}@/^/ "g";"tg" }
The dashed lines represent T's image of objects
The dotted lines are the image of morphisms under T
  • In this diagram the objects TX, TY and TZ are in a different category.

References

  1. Jump up Algebra I: Rings, modules and categories - Carl Faith