Difference between revisions of "Extending pre-measures to outer-measures"

From Maths
Jump to: navigation, search
m (Added warning, page is not good enough to be referenced yet, hope to finish later today.)
m (Saving work)
Line 6: Line 6:
 
Given by:
 
Given by:
 
* {{M|\mu^*:\mathcal{H}_{\sigma_R}(\mathcal{R})\rightarrow\bar{\mathbb{R} }_{\ge0} }}
 
* {{M|\mu^*:\mathcal{H}_{\sigma_R}(\mathcal{R})\rightarrow\bar{\mathbb{R} }_{\ge0} }}
** {{MM|1=\mu^*:A\mapsto\text{inf}\left\{\left.\sum^\infty_{n=1}\bar{\mu}(A_n)\right\vert(A_n)_{n=1}^\infty\subseteq\mathcal{R}\wedge A\subseteq\bigcup_{n=1}^\infty A_n\right\} }}
+
** {{MM|1=\mu^*:A\mapsto\text{inf}\left\{\left.\sum^\infty_{n=1}\bar{\mu}(A_n)\right\vert(A_n)_{n=1}^\infty\subseteq\mathcal{R}\wedge A\subseteq\bigcup_{n=1}^\infty A_n\right\} }} - here {{M|\text{inf} }} denotes the [[infimum]] of a set.
 
The statement of the theorem is that this {{M|\mu^*}} is indeed an [[outer-measure]]
 
The statement of the theorem is that this {{M|\mu^*}} is indeed an [[outer-measure]]
 
==Proof==
 
==Proof==
 +
{{Begin Inline Theorem}}
 +
Proof notes
 +
{{Begin Inline Proof}}
 
{{Begin Notebox}}
 
{{Begin Notebox}}
 
Recall the definition of an [[outer-measure]], we must show {{M|\mu^*}} satisfies this.
 
Recall the definition of an [[outer-measure]], we must show {{M|\mu^*}} satisfies this.
Line 29: Line 32:
 
#*#* By [[passing to the infimum]] we see that {{M|\bar{\mu}(A)\le\mu^*(A)}} as required.
 
#*#* By [[passing to the infimum]] we see that {{M|\bar{\mu}(A)\le\mu^*(A)}} as required.
  
===Problems with proof===
+
'''Problems with proof'''
 
* How do we know the [[infimum]] even exists!
 
* How do we know the [[infimum]] even exists!
 
** Was being silly, any set of real numbers bounded below has an infimum, as {{M|\bar{\mu}:\mathcal{R}\rightarrow\bar{\mathbb{R} }_{\ge 0} }} we see that {{M|-1}} is a lower bound for example. Having a lot of silly moments lately.
 
** Was being silly, any set of real numbers bounded below has an infimum, as {{M|\bar{\mu}:\mathcal{R}\rightarrow\bar{\mathbb{R} }_{\ge 0} }} we see that {{M|-1}} is a lower bound for example. Having a lot of silly moments lately.
 
* For the application of ''[[passing to the infimum]]'' how do we know that the [[infimum]] involving {{M|\bar{\mu} }} even exists (this probably uses [[monotonic|monotonicity]] of {{M|\bar{\mu} }} and should be easy to show)
 
* For the application of ''[[passing to the infimum]]'' how do we know that the [[infimum]] involving {{M|\bar{\mu} }} even exists (this probably uses [[monotonic|monotonicity]] of {{M|\bar{\mu} }} and should be easy to show)
 +
{{End Proof}}{{End Theorem}}
 +
{{Begin Notebox}}
 +
Recall the definition of an [[outer-measure]], we must show {{M|\mu^*}} satisfies this.
 +
{{Begin Notebox Content}}
 +
{{:Outer-measure/Definition}}
 +
{{End Notebox Content}}{{End Notebox}}
 +
For brevity we define the following shorthands:
 +
# {{MM|1=\alpha_A:=\left\{(A_n)_{n=1}^\infty\ \Big\vert\ (A_n)_{n=1}^\infty\subseteq\mathcal{R}\wedge A\subseteq\bigcup_{n=1}^\infty A_n\right\} }}
 +
# {{MM|1=\beta_A:=\left\{\sum^\infty_{n=1}\bar{\mu}(A_n)\ \Big\vert\ (A_n)_{n=1}^\infty\in\alpha_A \right\} }}
 +
Now we may define {{M|\mu^*}} as:
 +
* {{M|1=\mu^*:A\mapsto\text{inf}(\beta_A)}}
 +
===Proof that {{M|\mu^*}} is an extension of {{M|\bar{\mu} }}===
 +
* Let {{M|A\in\mathcal{R} }} be given
 +
** In order to prove {{M|1=\bar{\mu}(A)=\mu^*(A)}} we need only prove {{M|[\bar{\mu}(A)\ge\mu^*(A)\wedge\bar{\mu}(A)\le\mu^*(A)]}}<ref group="Note">This is called the trichotomy rule or something, I should link to the relevant part of a [[partial order]] here</ref>
 +
**# '''Part 1: ''' {{M|\bar{\mu}(A)\ge\mu^*(A)}}
 +
**#* Consider the sequence {{MSeq|A_n}} given by {{M|1=A_1:=A}} and {{M|1=A_i:=\emptyset}} for {{M|i>1}}, so the sequence {{M|A,\emptyset,\emptyset,\ldots}}.
 +
**#** Clearly {{M|1=A\subseteq\bigcup^\infty_{n=1}A_n}} (as {{M|1=\bigcup^\infty_{n=1}A_n=A}})
 +
**#** As such this {{MSeq|A_n|post=\in\alpha_A}}
 +
**#** This means {{M|1=\sum^\infty_{n=1}\bar{\mu}(A_n)\in\beta_A}} (as {{MSeq|A_n|post=\in\alpha_A}} and {{M|\beta_A}} is the sum of all the pre-measures {{WRT}} {{M|\bar{\mu} }} of the sequences of sets in {{M|\alpha_A}})
 +
**#** Recall that the [[infimum]] of a set is, among other things, a [[lower bound]] of the set. So:
 +
**#*** for {{M|\text{inf}(S)}} (for a [[set]], {{M|S}}) we see:
 +
**#**** {{M|\forall s\in S[\text{inf}(S)\le s]}} - this uses only the [[lower bound]] part of the [[infimum]] definition.
 +
**#** By applying this to {{M|1=\text{inf}(\beta_A)\big(=\mu^*(A)\big)}} we see:
 +
**#*** {{M|1=\mu^*(A):=\text{inf}(\beta_A)\le\sum^\infty_{n=1}\bar{\mu}(A_n)=\bar{\mu}(A)}}
 +
**#**** as {{M|1=\sum^\infty_{n=1}\bar{\mu}(A_n)\in\beta_A}} and {{M|\text{inf}(S)}} remember and
 +
**#**** By definition of a (''[[pre-measure|pre]]''-)[[measure]], {{M|1=\mu(\emptyset)=0}}, so: {{M|1=\sum^\infty_{n=1}\bar{\mu}(A_n)=\bar{\mu}(A)+\bar{\mu}(\emptyset)+\bar{\mu}(\emptyset)+\cdots=\bar{\mu}(A)}}
 +
**#* We have shown {{M|1=\mu^*(A)\le\bar{\mu}(A)}} as required
 +
**# '''Part 2:''' {{M|\bar{\mu}(A)\le\mu^*(A)}}
 +
**#* SEE NOTEPAD. Define {{M|1=\gamma_A:=\left\{\bar{\mu}(A)\right\} }}, then using [[the (pre-)measure of a set is no more than the sum of the (pre-)measures of the elements of a covering for that set]] we see {{M|\forall x\in\beta_A\exists y\in\gamma_A[y\le x]}} - we may now [[passing to the infimum|pass to the infimum]].
 +
==Notes==
 +
<references group="Note"/>
 
==References==
 
==References==
 
<references/>
 
<references/>
 
{{Measure theory navbox|plain}}
 
{{Measure theory navbox|plain}}
 
{{Theorem Of|Measure Theory}}
 
{{Theorem Of|Measure Theory}}

Revision as of 22:41, 31 July 2016

Caution:This page is currently being written and is not ready for being used as a reference, it's a notes quality page

Statement

Given a pre-measure, ˉμ, on a ring of sets, R, we can define a new function, μ which is[1]:

Given by:

  • μ:HσR(R)ˉR0
    • μ:Ainf{n=1ˉμ(An)|(An)n=1RAn=1An} - here inf denotes the infimum of a set.

The statement of the theorem is that this μ is indeed an outer-measure

Proof

[Expand]

Proof notes

[Expand]

Recall the definition of an outer-measure, we must show μ satisfies this.

For brevity we define the following shorthands:

  1. αA:={(An)n=1 | (An)n=1RAn=1An}
  2. βA:={n=1ˉμ(An) | (An)n=1αA}

Now we may define μ as:

  • μ:Ainf(βA)

Proof that μ is an extension of ˉμ

  • Let AR be given
    • In order to prove ˉμ(A)=μ(A) we need only prove [ˉμ(A)μ(A)ˉμ(A)μ(A)][Note 1]
      1. Part 1: ˉμ(A)μ(A)
        • Consider the sequence (An)n=1 given by A1:=A and Ai:= for i>1, so the sequence A,,,.
          • Clearly An=1An (as n=1An=A)
          • As such this (An)n=1αA
          • This means n=1ˉμ(An)βA (as (An)n=1αA and βA is the sum of all the pre-measures Template:WRT ˉμ of the sequences of sets in αA)
          • Recall that the infimum of a set is, among other things, a lower bound of the set. So:
            • for inf(S) (for a set, S) we see:
              • sS[inf(S)s] - this uses only the lower bound part of the infimum definition.
          • By applying this to inf(βA)(=μ(A)) we see:
            • μ(A):=inf(βA)n=1ˉμ(An)=ˉμ(A)
              • as n=1ˉμ(An)βA and inf(S) remember and
              • By definition of a (pre-)measure, μ()=0, so: n=1ˉμ(An)=ˉμ(A)+ˉμ()+ˉμ()+=ˉμ(A)
        • We have shown μ(A)ˉμ(A) as required
      2. Part 2: ˉμ(A)μ(A)

Notes

  1. Jump up This is called the trichotomy rule or something, I should link to the relevant part of a partial order here

References

  1. Jump up to: 1.0 1.1 1.2 Measure Theory - Paul R. Halmos