Difference between revisions of "Extending pre-measures to outer-measures"
From Maths
m (Saving work) |
(→Proof: Adding sigma-subadditive part.) |
||
Line 65: | Line 65: | ||
**# '''Part 2:''' {{M|\bar{\mu}(A)\le\mu^*(A)}} | **# '''Part 2:''' {{M|\bar{\mu}(A)\le\mu^*(A)}} | ||
**#* SEE NOTEPAD. Define {{M|1=\gamma_A:=\left\{\bar{\mu}(A)\right\} }}, then using [[the (pre-)measure of a set is no more than the sum of the (pre-)measures of the elements of a covering for that set]] we see {{M|\forall x\in\beta_A\exists y\in\gamma_A[y\le x]}} - we may now [[passing to the infimum|pass to the infimum]]. | **#* SEE NOTEPAD. Define {{M|1=\gamma_A:=\left\{\bar{\mu}(A)\right\} }}, then using [[the (pre-)measure of a set is no more than the sum of the (pre-)measures of the elements of a covering for that set]] we see {{M|\forall x\in\beta_A\exists y\in\gamma_A[y\le x]}} - we may now [[passing to the infimum|pass to the infimum]]. | ||
+ | ===Proof that {{M|\mu^*}} is {{sigma|subadditive}}=== | ||
+ | *Let {{MSeq|A_n|in=\mathcal{H}_{\sigma R}(\mathcal{R})}} be given. We want to show that {{M|1=\mu^*(\bigcup_{n=1}^\infty A_n)\le\sum^\infty_{n=1}\mu^*(A_n)}} | ||
+ | ** Let {{M|\epsilon>0}} (with {{M|\epsilon\in\mathbb{R} }}) be given. | ||
+ | *** We will now define a new family of {{plural|sequence|s}}. For each {{M|A_n}} we will construct the sequence {{MSeq|A_{nm}|m|in=\mathcal{R} }} of sets such that: | ||
+ | ***# {{M|1=\forall n\in\mathbb{N}[A_n\subseteq\bigcup_{m=1}^\infty A_{nm}]}} and | ||
+ | ***# {{M|1=\forall n\in\mathbb{N}[\sum^\infty_{m=1}\bar{\mu}(A_{nm})\le\mu^*(A_n)+\epsilon\frac{1}{2^n}]}} | ||
+ | *** Let {{M|n\in\mathbb{N} }} be given (we will now define {{MSeq|A_{mn}|m|in=\mathcal{R} }}) | ||
+ | **** Recall that {{M|1=\mu^*(A_n):=\text{inf}(\beta_{A_n})}} | ||
+ | **** Any value greater than the [[infimum|{{M|\text{inf}(\beta_{A_n})}}]], say {{M|w}}, is not a [[lower bound]] so there must exist an element in {{M|\beta_{A_n} }} less that {{M|w}} (so {{M|w}} cannot be a lower bound) | ||
+ | ***** Choose {{M|1=w:=\text{inf}(\beta_{A_n})+\frac{\epsilon}{2^n} }} | ||
+ | ****** As {{M|\epsilon>0}} and {{M|\frac{1}{2^n}>0}} we see {{M|\frac{\epsilon}{2^n}>0}}, thus {{M|\mu^*(A_n)<\mu^*(A_n)+\frac{\epsilon}{2^n} }} | ||
+ | **** By the definition of [[infimum]]: | ||
+ | ***** {{M|1=\exists s\in\beta_{A_n}[w>\text{inf}(\beta_{A_n})\implies s< w]}} | ||
+ | **** If {{M|s\in\beta_{A_n} }} then: | ||
+ | ***** {{M|1=\exists(B_n)_{n=1}^\infty\in\alpha_{A_n} }} such that {{M|1=s=\sum^\infty_{n=1}\bar{\mu}(B_n)}}. | ||
+ | **** As {{M|1=s<w=\text{inf}(\beta_{A_n})+\frac{\epsilon}{2^n}=\mu^*(A_n)+\frac{\epsilon}{2^n} }} and {{M|1=s=\sum^\infty_{n=1}\bar{\mu}(B_n)}} we see: | ||
+ | ***** {{M|1=\sum^\infty_{n=1}\bar{\mu}(B_n)<\mu^*(A_n)+\frac{\epsilon}{2^n} }} | ||
+ | **** {{Caution|1=This doesn't show that {{MM|1=A_n\subseteq\bigcup_{m=1}^\infty A_{nm} }} - don't forget!}} | ||
+ | **** Define a new sequence, {{MSeq|A_{nm}|m|in=\mathcal{R} }} to be the sequence {{MSeq|B_n|post=\in\alpha_{A_n} }} we just showed to exist | ||
+ | *** Since {{M|n\in\mathbb{N} }} was arbitrary for each {{M|1=A_n\in(A_k)_{k=1}^\infty\subseteq\mathcal{H}_{\sigma R}(\mathcal{R})}} we now have a new sequence: {{MSeq|A_{nm}|m|in=\mathcal{R} }} such that: | ||
+ | **** {{MM|1=\forall n\in\mathbb{N}\left[\sum^\infty_{m=1}\bar{\mu}(A_{nm})<\mu^*(A_n)+\frac{\epsilon}{2^n}\right]}} and {{MM|1=\forall n\in\mathbb{N}\left[A_n\subseteq\bigcup_{m=1}^\infty A_{nm}\right]}} | ||
+ | *** Recall now that a [[union of subsets is a subset of the union]], thus: | ||
+ | **** {{MM|1=\bigcup_{n=1}^\infty A_n\subseteq \bigcup_{n=1}^\infty\left(\bigcup_{m=1}^\infty A_{nm}\right)}} | ||
+ | *** So {{MM|1=\mu^*\left(\bigcup_{n=1}^\infty A_n\right)\le\sum^\infty_{n=1}\left(\sum_{m=1}^\infty \bar{\mu}(A_{nm})\right)<\sum_{n=1}^\infty\left(\mu^*(A_n)+\frac{\epsilon}{2^n}\right)}}{{MM|1==\sum^\infty_{n=1}\mu^*(A_n)+\sum^\infty_{n=1}\frac{\epsilon}{2^n} }} | ||
+ | **** Note that {{M|1=\sum^\infty_{n=1}\frac{\epsilon}{2^n}=\epsilon\sum^\infty_{n=1}\frac{1}{2^n} }} and that {{M|1=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots}} is a classic example of a [[geometric series]], we see easily that: | ||
+ | ***** {{M|1=\epsilon\sum^\infty_{n=1}\frac{1}{2^n}=1\epsilon=\epsilon}} thus: | ||
+ | *** {{MM|1=\mu^*\left(\bigcup_{n=1}^\infty A_n\right)<\sum^\infty_{n=1}\mu^*(A_n)+\epsilon}} | ||
+ | ** Since {{M|\epsilon>0}} (with {{M|\epsilon\in\mathbb{R} }} was arbitrary we see: | ||
+ | *** {{M|1=\forall\epsilon>0\left[\mu^*\left(\bigcup_{n=1}^\infty A_n\right)<\sum^\infty_{n=1}\mu^*(A_n)+\epsilon\right]}} | ||
+ | ** Recall that {{M|1=\left(\forall\epsilon>0[a<b+\epsilon]\right)\iff\left(a\le b\right)}} (from the [[epsilon form of inequalities]]) | ||
+ | ** Thus: {{MM|1=\mu^*\left(\bigcup_{n=1}^\infty A_n\right)\le\sum^\infty_{n=1}\mu^*(A_n)}} | ||
+ | * Since {{MSeq|A_n|in=\mathcal{H}_{\sigma R}(\mathcal{R})}} was arbitrary we have shown that: | ||
+ | ** {{MM|1=\forall(A_n)_{n=1}^\infty\subseteq\mathcal{H}_{\sigma R}(\mathcal{R})\left[\mu^*\left(\bigcup_{n=1}^\infty A_n\right)\le\sum^\infty_{n=1}\mu^*(A_n)\right]}} | ||
+ | This completes the proof that {{M|\mu^*}} is {{sigma|subadditive}} | ||
+ | ====Caveats==== | ||
+ | # Halmos starts with a set {{M|A\in\mathcal{H}_{\sigma R}(\mathcal{R})}} and a [[sequence]] {{MSeq|A_n|in=\mathcal{H}_{\sigma R}(\mathcal{R})}} such that: | ||
+ | #* {{M|1=A\subseteq\bigcup_{n=1}^\infty A_n}} | ||
+ | #: where as I just start with a sequence, as {{M|\mathcal{H}_{\sigma R}(\mathcal{R})}} is a [[sigma-algebra|{{sigma|algebra}}]], their union is also in {{M|\mathcal{H}_{\sigma R}(\mathcal{R})}} | ||
+ | # {{Warning|I never consider the case where a measure measures a set to be infinite. Where this happens things like {{M|\infty<\infty}} make no sense}} | ||
+ | ===The rest=== | ||
+ | Still to do: | ||
+ | # {{M|\mu^*}} being monotonic with respect to set inclusion and the usual ordering on the reals. | ||
+ | # {{M|1=\mu^*(\emptyset)=0}} - this can come from the extension part as {{M|\bar{\mu} }} has this property already | ||
+ | |||
==Notes== | ==Notes== | ||
<references group="Note"/> | <references group="Note"/> |
Latest revision as of 16:59, 17 August 2016
- Caution:This page is currently being written and is not ready for being used as a reference, it's a notes quality page
Contents
[hide]Statement
Given a pre-measure, ˉμ, on a ring of sets, R, we can define a new function, μ∗ which is[1]:
- an extension of ˉμ and
- an outer-measure (on the hereditary σ-ring generated by R, written HσR(R))
Given by:
- μ∗:HσR(R)→ˉR≥0
- μ∗:A↦inf{∞∑n=1ˉμ(An)|(An)∞n=1⊆R∧A⊆∞⋃n=1An} - here inf denotes the infimum of a set.
The statement of the theorem is that this μ∗ is indeed an outer-measure
Proof
[Expand]
Proof notes
[Expand]
Recall the definition of an outer-measure, we must show μ∗ satisfies this.
For brevity we define the following shorthands:
- αA:={(An)∞n=1 | (An)∞n=1⊆R∧A⊆∞⋃n=1An}
- βA:={∞∑n=1ˉμ(An) | (An)∞n=1∈αA}
Now we may define μ∗ as:
- μ∗:A↦inf(βA)
Proof that \mu^* is an extension of \bar{\mu}
- Let A\in\mathcal{R} be given
- In order to prove \bar{\mu}(A)=\mu^*(A) we need only prove [\bar{\mu}(A)\ge\mu^*(A)\wedge\bar{\mu}(A)\le\mu^*(A)][Note 1]
- Part 1: \bar{\mu}(A)\ge\mu^*(A)
- Consider the sequence ({ A_n })_{ n = 1 }^{ \infty } given by A_1:=A and A_i:=\emptyset for i>1, so the sequence A,\emptyset,\emptyset,\ldots.
- Clearly A\subseteq\bigcup^\infty_{n=1}A_n (as \bigcup^\infty_{n=1}A_n=A)
- As such this ({ A_n })_{ n = 1 }^{ \infty } \in\alpha_A
- This means \sum^\infty_{n=1}\bar{\mu}(A_n)\in\beta_A (as ({ A_n })_{ n = 1 }^{ \infty } \in\alpha_A and \beta_A is the sum of all the pre-measures Template:WRT \bar{\mu} of the sequences of sets in \alpha_A)
- Recall that the infimum of a set is, among other things, a lower bound of the set. So:
- for \text{inf}(S) (for a set, S) we see:
- \forall s\in S[\text{inf}(S)\le s] - this uses only the lower bound part of the infimum definition.
- for \text{inf}(S) (for a set, S) we see:
- By applying this to \text{inf}(\beta_A)\big(=\mu^*(A)\big) we see:
- \mu^*(A):=\text{inf}(\beta_A)\le\sum^\infty_{n=1}\bar{\mu}(A_n)=\bar{\mu}(A)
- We have shown \mu^*(A)\le\bar{\mu}(A) as required
- Consider the sequence ({ A_n })_{ n = 1 }^{ \infty } given by A_1:=A and A_i:=\emptyset for i>1, so the sequence A,\emptyset,\emptyset,\ldots.
- Part 2: \bar{\mu}(A)\le\mu^*(A)
- SEE NOTEPAD. Define \gamma_A:=\left\{\bar{\mu}(A)\right\}, then using the (pre-)measure of a set is no more than the sum of the (pre-)measures of the elements of a covering for that set we see \forall x\in\beta_A\exists y\in\gamma_A[y\le x] - we may now pass to the infimum.
- Part 1: \bar{\mu}(A)\ge\mu^*(A)
- In order to prove \bar{\mu}(A)=\mu^*(A) we need only prove [\bar{\mu}(A)\ge\mu^*(A)\wedge\bar{\mu}(A)\le\mu^*(A)][Note 1]
Proof that \mu^* is \sigma-subadditive
- Let ({ A_n })_{ n = 1 }^{ \infty }\subseteq \mathcal{H}_{\sigma R}(\mathcal{R}) be given. We want to show that \mu^*(\bigcup_{n=1}^\infty A_n)\le\sum^\infty_{n=1}\mu^*(A_n)
- Let \epsilon>0 (with \epsilon\in\mathbb{R} ) be given.
- We will now define a new family of sequences. For each A_n we will construct the sequence ({ A_{nm} })_{ m = 1 }^{ \infty }\subseteq \mathcal{R} of sets such that:
- \forall n\in\mathbb{N}[A_n\subseteq\bigcup_{m=1}^\infty A_{nm}] and
- \forall n\in\mathbb{N}[\sum^\infty_{m=1}\bar{\mu}(A_{nm})\le\mu^*(A_n)+\epsilon\frac{1}{2^n}]
- Let n\in\mathbb{N} be given (we will now define ({ A_{mn} })_{ m = 1 }^{ \infty }\subseteq \mathcal{R} )
- Recall that \mu^*(A_n):=\text{inf}(\beta_{A_n})
- Any value greater than the \text{inf}(\beta_{A_n}), say w, is not a lower bound so there must exist an element in \beta_{A_n} less that w (so w cannot be a lower bound)
- Choose w:=\text{inf}(\beta_{A_n})+\frac{\epsilon}{2^n}
- As \epsilon>0 and \frac{1}{2^n}>0 we see \frac{\epsilon}{2^n}>0, thus \mu^*(A_n)<\mu^*(A_n)+\frac{\epsilon}{2^n}
- Choose w:=\text{inf}(\beta_{A_n})+\frac{\epsilon}{2^n}
- By the definition of infimum:
- \exists s\in\beta_{A_n}[w>\text{inf}(\beta_{A_n})\implies s< w]
- If s\in\beta_{A_n} then:
- \exists(B_n)_{n=1}^\infty\in\alpha_{A_n} such that s=\sum^\infty_{n=1}\bar{\mu}(B_n).
- As s<w=\text{inf}(\beta_{A_n})+\frac{\epsilon}{2^n}=\mu^*(A_n)+\frac{\epsilon}{2^n} and s=\sum^\infty_{n=1}\bar{\mu}(B_n) we see:
- \sum^\infty_{n=1}\bar{\mu}(B_n)<\mu^*(A_n)+\frac{\epsilon}{2^n}
- Caution:This doesn't show that A_n\subseteq\bigcup_{m=1}^\infty A_{nm} - don't forget!
- Define a new sequence, ({ A_{nm} })_{ m = 1 }^{ \infty }\subseteq \mathcal{R} to be the sequence ({ B_n })_{ n = 1 }^{ \infty } \in\alpha_{A_n} we just showed to exist
- Since n\in\mathbb{N} was arbitrary for each A_n\in(A_k)_{k=1}^\infty\subseteq\mathcal{H}_{\sigma R}(\mathcal{R}) we now have a new sequence: ({ A_{nm} })_{ m = 1 }^{ \infty }\subseteq \mathcal{R} such that:
- \forall n\in\mathbb{N}\left[\sum^\infty_{m=1}\bar{\mu}(A_{nm})<\mu^*(A_n)+\frac{\epsilon}{2^n}\right] and \forall n\in\mathbb{N}\left[A_n\subseteq\bigcup_{m=1}^\infty A_{nm}\right]
- Recall now that a union of subsets is a subset of the union, thus:
- \bigcup_{n=1}^\infty A_n\subseteq \bigcup_{n=1}^\infty\left(\bigcup_{m=1}^\infty A_{nm}\right)
- So \mu^*\left(\bigcup_{n=1}^\infty A_n\right)\le\sum^\infty_{n=1}\left(\sum_{m=1}^\infty \bar{\mu}(A_{nm})\right)<\sum_{n=1}^\infty\left(\mu^*(A_n)+\frac{\epsilon}{2^n}\right)=\sum^\infty_{n=1}\mu^*(A_n)+\sum^\infty_{n=1}\frac{\epsilon}{2^n}
- Note that \sum^\infty_{n=1}\frac{\epsilon}{2^n}=\epsilon\sum^\infty_{n=1}\frac{1}{2^n} and that \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots is a classic example of a geometric series, we see easily that:
- \epsilon\sum^\infty_{n=1}\frac{1}{2^n}=1\epsilon=\epsilon thus:
- Note that \sum^\infty_{n=1}\frac{\epsilon}{2^n}=\epsilon\sum^\infty_{n=1}\frac{1}{2^n} and that \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots is a classic example of a geometric series, we see easily that:
- \mu^*\left(\bigcup_{n=1}^\infty A_n\right)<\sum^\infty_{n=1}\mu^*(A_n)+\epsilon
- We will now define a new family of sequences. For each A_n we will construct the sequence ({ A_{nm} })_{ m = 1 }^{ \infty }\subseteq \mathcal{R} of sets such that:
- Since \epsilon>0 (with \epsilon\in\mathbb{R} was arbitrary we see:
- \forall\epsilon>0\left[\mu^*\left(\bigcup_{n=1}^\infty A_n\right)<\sum^\infty_{n=1}\mu^*(A_n)+\epsilon\right]
- Recall that \left(\forall\epsilon>0[a<b+\epsilon]\right)\iff\left(a\le b\right) (from the epsilon form of inequalities)
- Thus: \mu^*\left(\bigcup_{n=1}^\infty A_n\right)\le\sum^\infty_{n=1}\mu^*(A_n)
- Let \epsilon>0 (with \epsilon\in\mathbb{R} ) be given.
- Since ({ A_n })_{ n = 1 }^{ \infty }\subseteq \mathcal{H}_{\sigma R}(\mathcal{R}) was arbitrary we have shown that:
- \forall(A_n)_{n=1}^\infty\subseteq\mathcal{H}_{\sigma R}(\mathcal{R})\left[\mu^*\left(\bigcup_{n=1}^\infty A_n\right)\le\sum^\infty_{n=1}\mu^*(A_n)\right]
This completes the proof that \mu^* is \sigma-subadditive
Caveats
- Halmos starts with a set A\in\mathcal{H}_{\sigma R}(\mathcal{R}) and a sequence ({ A_n })_{ n = 1 }^{ \infty }\subseteq \mathcal{H}_{\sigma R}(\mathcal{R}) such that:
- A\subseteq\bigcup_{n=1}^\infty A_n
- where as I just start with a sequence, as \mathcal{H}_{\sigma R}(\mathcal{R}) is a \sigma-algebra, their union is also in \mathcal{H}_{\sigma R}(\mathcal{R})
- Warning:I never consider the case where a measure measures a set to be infinite. Where this happens things like \infty<\infty make no sense
The rest
Still to do:
- \mu^* being monotonic with respect to set inclusion and the usual ordering on the reals.
- \mu^*(\emptyset)=0 - this can come from the extension part as \bar{\mu} has this property already
Notes
- Jump up ↑ This is called the trichotomy rule or something, I should link to the relevant part of a partial order here
References
|