Difference between revisions of "Extending pre-measures to outer-measures"

From Maths
Jump to: navigation, search
m (Saving work)
(Proof: Adding sigma-subadditive part.)
 
Line 65: Line 65:
 
**# '''Part 2:''' {{M|\bar{\mu}(A)\le\mu^*(A)}}
 
**# '''Part 2:''' {{M|\bar{\mu}(A)\le\mu^*(A)}}
 
**#* SEE NOTEPAD. Define {{M|1=\gamma_A:=\left\{\bar{\mu}(A)\right\} }}, then using [[the (pre-)measure of a set is no more than the sum of the (pre-)measures of the elements of a covering for that set]] we see {{M|\forall x\in\beta_A\exists y\in\gamma_A[y\le x]}} - we may now [[passing to the infimum|pass to the infimum]].
 
**#* SEE NOTEPAD. Define {{M|1=\gamma_A:=\left\{\bar{\mu}(A)\right\} }}, then using [[the (pre-)measure of a set is no more than the sum of the (pre-)measures of the elements of a covering for that set]] we see {{M|\forall x\in\beta_A\exists y\in\gamma_A[y\le x]}} - we may now [[passing to the infimum|pass to the infimum]].
 +
===Proof that {{M|\mu^*}} is {{sigma|subadditive}}===
 +
*Let {{MSeq|A_n|in=\mathcal{H}_{\sigma R}(\mathcal{R})}} be given. We want to show that {{M|1=\mu^*(\bigcup_{n=1}^\infty A_n)\le\sum^\infty_{n=1}\mu^*(A_n)}}
 +
** Let {{M|\epsilon>0}} (with {{M|\epsilon\in\mathbb{R} }}) be given.
 +
*** We will now define a new family of {{plural|sequence|s}}. For each {{M|A_n}} we will construct the sequence {{MSeq|A_{nm}|m|in=\mathcal{R} }} of sets such that:
 +
***# {{M|1=\forall n\in\mathbb{N}[A_n\subseteq\bigcup_{m=1}^\infty A_{nm}]}} and
 +
***# {{M|1=\forall n\in\mathbb{N}[\sum^\infty_{m=1}\bar{\mu}(A_{nm})\le\mu^*(A_n)+\epsilon\frac{1}{2^n}]}}
 +
*** Let {{M|n\in\mathbb{N} }} be given (we will now define {{MSeq|A_{mn}|m|in=\mathcal{R} }})
 +
**** Recall that {{M|1=\mu^*(A_n):=\text{inf}(\beta_{A_n})}}
 +
**** Any value greater than the [[infimum|{{M|\text{inf}(\beta_{A_n})}}]], say {{M|w}}, is not a [[lower bound]] so there must exist an element in {{M|\beta_{A_n} }} less that {{M|w}} (so {{M|w}} cannot be a lower bound)
 +
***** Choose {{M|1=w:=\text{inf}(\beta_{A_n})+\frac{\epsilon}{2^n} }}
 +
****** As {{M|\epsilon>0}} and {{M|\frac{1}{2^n}>0}} we see {{M|\frac{\epsilon}{2^n}>0}}, thus {{M|\mu^*(A_n)<\mu^*(A_n)+\frac{\epsilon}{2^n} }}
 +
**** By the definition of [[infimum]]:
 +
***** {{M|1=\exists s\in\beta_{A_n}[w>\text{inf}(\beta_{A_n})\implies s< w]}}
 +
**** If {{M|s\in\beta_{A_n} }} then:
 +
***** {{M|1=\exists(B_n)_{n=1}^\infty\in\alpha_{A_n} }} such that {{M|1=s=\sum^\infty_{n=1}\bar{\mu}(B_n)}}.
 +
**** As {{M|1=s<w=\text{inf}(\beta_{A_n})+\frac{\epsilon}{2^n}=\mu^*(A_n)+\frac{\epsilon}{2^n} }} and {{M|1=s=\sum^\infty_{n=1}\bar{\mu}(B_n)}} we see:
 +
***** {{M|1=\sum^\infty_{n=1}\bar{\mu}(B_n)<\mu^*(A_n)+\frac{\epsilon}{2^n} }}
 +
**** {{Caution|1=This doesn't show that {{MM|1=A_n\subseteq\bigcup_{m=1}^\infty A_{nm} }} - don't forget!}}
 +
**** Define a new sequence, {{MSeq|A_{nm}|m|in=\mathcal{R} }} to be the sequence {{MSeq|B_n|post=\in\alpha_{A_n} }} we just showed to exist
 +
*** Since {{M|n\in\mathbb{N} }} was arbitrary for each {{M|1=A_n\in(A_k)_{k=1}^\infty\subseteq\mathcal{H}_{\sigma R}(\mathcal{R})}} we now have a new sequence: {{MSeq|A_{nm}|m|in=\mathcal{R} }} such that:
 +
**** {{MM|1=\forall n\in\mathbb{N}\left[\sum^\infty_{m=1}\bar{\mu}(A_{nm})<\mu^*(A_n)+\frac{\epsilon}{2^n}\right]}} and {{MM|1=\forall n\in\mathbb{N}\left[A_n\subseteq\bigcup_{m=1}^\infty A_{nm}\right]}}
 +
*** Recall now that a [[union of subsets is a subset of the union]], thus:
 +
**** {{MM|1=\bigcup_{n=1}^\infty A_n\subseteq \bigcup_{n=1}^\infty\left(\bigcup_{m=1}^\infty A_{nm}\right)}}
 +
*** So {{MM|1=\mu^*\left(\bigcup_{n=1}^\infty A_n\right)\le\sum^\infty_{n=1}\left(\sum_{m=1}^\infty \bar{\mu}(A_{nm})\right)<\sum_{n=1}^\infty\left(\mu^*(A_n)+\frac{\epsilon}{2^n}\right)}}{{MM|1==\sum^\infty_{n=1}\mu^*(A_n)+\sum^\infty_{n=1}\frac{\epsilon}{2^n} }}
 +
**** Note that {{M|1=\sum^\infty_{n=1}\frac{\epsilon}{2^n}=\epsilon\sum^\infty_{n=1}\frac{1}{2^n} }} and that {{M|1=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots}} is a classic example of a [[geometric series]], we see easily that:
 +
***** {{M|1=\epsilon\sum^\infty_{n=1}\frac{1}{2^n}=1\epsilon=\epsilon}} thus:
 +
*** {{MM|1=\mu^*\left(\bigcup_{n=1}^\infty A_n\right)<\sum^\infty_{n=1}\mu^*(A_n)+\epsilon}}
 +
** Since {{M|\epsilon>0}} (with {{M|\epsilon\in\mathbb{R} }} was arbitrary we see:
 +
*** {{M|1=\forall\epsilon>0\left[\mu^*\left(\bigcup_{n=1}^\infty A_n\right)<\sum^\infty_{n=1}\mu^*(A_n)+\epsilon\right]}}
 +
** Recall that {{M|1=\left(\forall\epsilon>0[a<b+\epsilon]\right)\iff\left(a\le b\right)}} (from the [[epsilon form of inequalities]])
 +
** Thus: {{MM|1=\mu^*\left(\bigcup_{n=1}^\infty A_n\right)\le\sum^\infty_{n=1}\mu^*(A_n)}}
 +
* Since {{MSeq|A_n|in=\mathcal{H}_{\sigma R}(\mathcal{R})}} was arbitrary we have shown that:
 +
** {{MM|1=\forall(A_n)_{n=1}^\infty\subseteq\mathcal{H}_{\sigma R}(\mathcal{R})\left[\mu^*\left(\bigcup_{n=1}^\infty A_n\right)\le\sum^\infty_{n=1}\mu^*(A_n)\right]}}
 +
This completes the proof that {{M|\mu^*}} is {{sigma|subadditive}}
 +
====Caveats====
 +
# Halmos starts with a set {{M|A\in\mathcal{H}_{\sigma R}(\mathcal{R})}} and a [[sequence]] {{MSeq|A_n|in=\mathcal{H}_{\sigma R}(\mathcal{R})}} such that:
 +
#* {{M|1=A\subseteq\bigcup_{n=1}^\infty A_n}}
 +
#: where as I just start with a sequence, as {{M|\mathcal{H}_{\sigma R}(\mathcal{R})}} is a [[sigma-algebra|{{sigma|algebra}}]], their union is also in {{M|\mathcal{H}_{\sigma R}(\mathcal{R})}}
 +
# {{Warning|I never consider the case where a measure measures a set to be infinite. Where this happens things like {{M|\infty<\infty}} make no sense}}
 +
===The rest===
 +
Still to do:
 +
# {{M|\mu^*}} being monotonic with respect to set inclusion and the usual ordering on the reals.
 +
# {{M|1=\mu^*(\emptyset)=0}} - this can come from the extension part as {{M|\bar{\mu} }} has this property already
 +
 
==Notes==
 
==Notes==
 
<references group="Note"/>
 
<references group="Note"/>

Latest revision as of 16:59, 17 August 2016

Caution:This page is currently being written and is not ready for being used as a reference, it's a notes quality page

Statement

Given a pre-measure, ˉμ, on a ring of sets, R, we can define a new function, μ which is[1]:

Given by:

  • μ:HσR(R)ˉR0
    • μ:Ainf{n=1ˉμ(An)|(An)n=1RAn=1An} - here inf denotes the infimum of a set.

The statement of the theorem is that this μ is indeed an outer-measure

Proof

[Expand]

Proof notes

[Expand]

Recall the definition of an outer-measure, we must show μ satisfies this.

For brevity we define the following shorthands:

  1. αA:={(An)n=1 | (An)n=1RAn=1An}
  2. βA:={n=1ˉμ(An) | (An)n=1αA}

Now we may define μ as:

  • μ:Ainf(βA)

Proof that \mu^* is an extension of \bar{\mu}

  • Let A\in\mathcal{R} be given
    • In order to prove \bar{\mu}(A)=\mu^*(A) we need only prove [\bar{\mu}(A)\ge\mu^*(A)\wedge\bar{\mu}(A)\le\mu^*(A)][Note 1]
      1. Part 1: \bar{\mu}(A)\ge\mu^*(A)
        • Consider the sequence ({ A_n })_{ n = 1 }^{ \infty } given by A_1:=A and A_i:=\emptyset for i>1, so the sequence A,\emptyset,\emptyset,\ldots.
          • Clearly A\subseteq\bigcup^\infty_{n=1}A_n (as \bigcup^\infty_{n=1}A_n=A)
          • As such this ({ A_n })_{ n = 1 }^{ \infty } \in\alpha_A
          • This means \sum^\infty_{n=1}\bar{\mu}(A_n)\in\beta_A (as ({ A_n })_{ n = 1 }^{ \infty } \in\alpha_A and \beta_A is the sum of all the pre-measures Template:WRT \bar{\mu} of the sequences of sets in \alpha_A)
          • Recall that the infimum of a set is, among other things, a lower bound of the set. So:
            • for \text{inf}(S) (for a set, S) we see:
              • \forall s\in S[\text{inf}(S)\le s] - this uses only the lower bound part of the infimum definition.
          • By applying this to \text{inf}(\beta_A)\big(=\mu^*(A)\big) we see:
            • \mu^*(A):=\text{inf}(\beta_A)\le\sum^\infty_{n=1}\bar{\mu}(A_n)=\bar{\mu}(A)
              • as \sum^\infty_{n=1}\bar{\mu}(A_n)\in\beta_A and \text{inf}(S) remember and
              • By definition of a (pre-)measure, \mu(\emptyset)=0, so: \sum^\infty_{n=1}\bar{\mu}(A_n)=\bar{\mu}(A)+\bar{\mu}(\emptyset)+\bar{\mu}(\emptyset)+\cdots=\bar{\mu}(A)
        • We have shown \mu^*(A)\le\bar{\mu}(A) as required
      2. Part 2: \bar{\mu}(A)\le\mu^*(A)

Proof that \mu^* is \sigma-subadditive

  • Let ({ A_n })_{ n = 1 }^{ \infty }\subseteq \mathcal{H}_{\sigma R}(\mathcal{R}) be given. We want to show that \mu^*(\bigcup_{n=1}^\infty A_n)\le\sum^\infty_{n=1}\mu^*(A_n)
    • Let \epsilon>0 (with \epsilon\in\mathbb{R} ) be given.
      • We will now define a new family of sequences. For each A_n we will construct the sequence ({ A_{nm} })_{ m = 1 }^{ \infty }\subseteq \mathcal{R} of sets such that:
        1. \forall n\in\mathbb{N}[A_n\subseteq\bigcup_{m=1}^\infty A_{nm}] and
        2. \forall n\in\mathbb{N}[\sum^\infty_{m=1}\bar{\mu}(A_{nm})\le\mu^*(A_n)+\epsilon\frac{1}{2^n}]
      • Let n\in\mathbb{N} be given (we will now define ({ A_{mn} })_{ m = 1 }^{ \infty }\subseteq \mathcal{R} )
        • Recall that \mu^*(A_n):=\text{inf}(\beta_{A_n})
        • Any value greater than the \text{inf}(\beta_{A_n}), say w, is not a lower bound so there must exist an element in \beta_{A_n} less that w (so w cannot be a lower bound)
          • Choose w:=\text{inf}(\beta_{A_n})+\frac{\epsilon}{2^n}
            • As \epsilon>0 and \frac{1}{2^n}>0 we see \frac{\epsilon}{2^n}>0, thus \mu^*(A_n)<\mu^*(A_n)+\frac{\epsilon}{2^n}
        • By the definition of infimum:
          • \exists s\in\beta_{A_n}[w>\text{inf}(\beta_{A_n})\implies s< w]
        • If s\in\beta_{A_n} then:
          • \exists(B_n)_{n=1}^\infty\in\alpha_{A_n} such that s=\sum^\infty_{n=1}\bar{\mu}(B_n).
        • As s<w=\text{inf}(\beta_{A_n})+\frac{\epsilon}{2^n}=\mu^*(A_n)+\frac{\epsilon}{2^n} and s=\sum^\infty_{n=1}\bar{\mu}(B_n) we see:
          • \sum^\infty_{n=1}\bar{\mu}(B_n)<\mu^*(A_n)+\frac{\epsilon}{2^n}
        • Caution:This doesn't show that A_n\subseteq\bigcup_{m=1}^\infty A_{nm} - don't forget!
        • Define a new sequence, ({ A_{nm} })_{ m = 1 }^{ \infty }\subseteq \mathcal{R} to be the sequence ({ B_n })_{ n = 1 }^{ \infty } \in\alpha_{A_n} we just showed to exist
      • Since n\in\mathbb{N} was arbitrary for each A_n\in(A_k)_{k=1}^\infty\subseteq\mathcal{H}_{\sigma R}(\mathcal{R}) we now have a new sequence: ({ A_{nm} })_{ m = 1 }^{ \infty }\subseteq \mathcal{R} such that:
        • \forall n\in\mathbb{N}\left[\sum^\infty_{m=1}\bar{\mu}(A_{nm})<\mu^*(A_n)+\frac{\epsilon}{2^n}\right] and \forall n\in\mathbb{N}\left[A_n\subseteq\bigcup_{m=1}^\infty A_{nm}\right]
      • Recall now that a union of subsets is a subset of the union, thus:
        • \bigcup_{n=1}^\infty A_n\subseteq \bigcup_{n=1}^\infty\left(\bigcup_{m=1}^\infty A_{nm}\right)
      • So \mu^*\left(\bigcup_{n=1}^\infty A_n\right)\le\sum^\infty_{n=1}\left(\sum_{m=1}^\infty \bar{\mu}(A_{nm})\right)<\sum_{n=1}^\infty\left(\mu^*(A_n)+\frac{\epsilon}{2^n}\right)=\sum^\infty_{n=1}\mu^*(A_n)+\sum^\infty_{n=1}\frac{\epsilon}{2^n}
        • Note that \sum^\infty_{n=1}\frac{\epsilon}{2^n}=\epsilon\sum^\infty_{n=1}\frac{1}{2^n} and that \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots is a classic example of a geometric series, we see easily that:
          • \epsilon\sum^\infty_{n=1}\frac{1}{2^n}=1\epsilon=\epsilon thus:
      • \mu^*\left(\bigcup_{n=1}^\infty A_n\right)<\sum^\infty_{n=1}\mu^*(A_n)+\epsilon
    • Since \epsilon>0 (with \epsilon\in\mathbb{R} was arbitrary we see:
      • \forall\epsilon>0\left[\mu^*\left(\bigcup_{n=1}^\infty A_n\right)<\sum^\infty_{n=1}\mu^*(A_n)+\epsilon\right]
    • Recall that \left(\forall\epsilon>0[a<b+\epsilon]\right)\iff\left(a\le b\right) (from the epsilon form of inequalities)
    • Thus: \mu^*\left(\bigcup_{n=1}^\infty A_n\right)\le\sum^\infty_{n=1}\mu^*(A_n)
  • Since ({ A_n })_{ n = 1 }^{ \infty }\subseteq \mathcal{H}_{\sigma R}(\mathcal{R}) was arbitrary we have shown that:
    • \forall(A_n)_{n=1}^\infty\subseteq\mathcal{H}_{\sigma R}(\mathcal{R})\left[\mu^*\left(\bigcup_{n=1}^\infty A_n\right)\le\sum^\infty_{n=1}\mu^*(A_n)\right]

This completes the proof that \mu^* is \sigma-subadditive

Caveats

  1. Halmos starts with a set A\in\mathcal{H}_{\sigma R}(\mathcal{R}) and a sequence ({ A_n })_{ n = 1 }^{ \infty }\subseteq \mathcal{H}_{\sigma R}(\mathcal{R}) such that:
    • A\subseteq\bigcup_{n=1}^\infty A_n
    where as I just start with a sequence, as \mathcal{H}_{\sigma R}(\mathcal{R}) is a \sigma-algebra, their union is also in \mathcal{H}_{\sigma R}(\mathcal{R})
  2. Warning:I never consider the case where a measure measures a set to be infinite. Where this happens things like \infty<\infty make no sense

The rest

Still to do:

  1. \mu^* being monotonic with respect to set inclusion and the usual ordering on the reals.
  2. \mu^*(\emptyset)=0 - this can come from the extension part as \bar{\mu} has this property already

Notes

  1. Jump up This is called the trichotomy rule or something, I should link to the relevant part of a partial order here

References

  1. Jump up to: 1.0 1.1 1.2 Measure Theory - Paul R. Halmos