Difference between revisions of "Norm"

From Maths
Jump to: navigation, search
(Created page with "==Definition== A norm on a vector space {{M|(V,F)}} is a function <math>\|\cdot\|:V\rightarrow\mathbb{R}</math> such that: # <math>\forall x\in V\ \|x\|\ge 0<...")
 
(Missed 4th property)
Line 4: Line 4:
 
# <math>\|x\|=0\iff x=0</math>
 
# <math>\|x\|=0\iff x=0</math>
 
# <math>\forall \lambda\in F, x\in V\ \|\lambda x\|=|\lambda|\|x\|</math> where <math>|\cdot|</math> denotes [[Absolute value|absolute value]]
 
# <math>\forall \lambda\in F, x\in V\ \|\lambda x\|=|\lambda|\|x\|</math> where <math>|\cdot|</math> denotes [[Absolute value|absolute value]]
 +
# <math>\forall x,y\in V\ \|x+y\|\le\|x\|+\|y\|</math> - a form of the [[Triangle inequality|triangle inequality]]
 +
  
 
{{Definition|Linear Algebra}}
 
{{Definition|Linear Algebra}}

Revision as of 16:13, 7 March 2015

Definition

A norm on a vector space (V,F) is a function :VR such that:

  1. xV x0
  2. x=0x=0
  3. λF,xV λx=|λ|x where || denotes absolute value
  4. x,yV x+yx+y - a form of the triangle inequality