Difference between revisions of "Norm"

From Maths
Jump to: navigation, search
m
m
Line 18: Line 18:
  
 
<math>\|x\|_2=\sqrt{\sum^n_{i=1}x_i^2}</math>
 
<math>\|x\|_2=\sqrt{\sum^n_{i=1}x_i^2}</math>
 +
====Proof that it is a norm====
 
{{Todo|proof}}
 
{{Todo|proof}}
 +
=====Part 4 - Triangle inequality=====
 +
Let <math>x,y\in\mathbb{R}^n</math>
 +
 +
<math>\|x+y\|_2^2=\sum^n_{i=1}(x_i+y_i)^2</math>
 +
<math>=\sum^n_{i=1}x_i^2+2\sum^n_{i=1}x_iy_i+\sum^n_{i=1}y_i^2</math>
 +
<math>\le\sum^n_{i=1}x_i^2+2\sqrt{\sum^n_{i=1}x_i^2}\sqrt{\sum^n_{i=1}y_i^2}+\sum^n_{i=1}y_i^2</math> using the [[Cauchy-Schwarz inequality]]
 +
 +
<math>=\left(\sqrt{\sum^n_{i=1}x_i^2}+\sqrt{\sum^n_{i=1}y_i^2}\right)^2</math>
 +
<math>=\left(\|x\|_2+\|y\|_2\right)^2</math>
 +
 +
Thus we see: <math>\|x+y\|_2^2\le\left(\|x\|_2+\|y\|_2\right)^2</math>, as norms are always <math>\ge 0</math> we see:
 +
 +
<math>\|x+y\|_2\le\|x\|_2+\|y\|_2</math> - as required.
 +
 
{{Definition|Linear Algebra}}
 
{{Definition|Linear Algebra}}

Revision as of 17:15, 7 March 2015

Definition

A norm on a vector space (V,F) is a function :VR such that:

  1. xV x0
  2. x=0x=0
  3. λF,xV λx=|λ|x where || denotes absolute value
  4. x,yV x+yx+y - a form of the triangle inequality

Often parts 1 and 2 are combined into the statement

  • x0 and x=0x=0 so only 3 requirements will be stated.

I don't like this

Examples

The Euclidean Norm

The Euclidean norm is denoted 2


Here for xRn we have:

x2=ni=1x2i

Proof that it is a norm


TODO: proof


Part 4 - Triangle inequality

Let x,yRn

x+y22=ni=1(xi+yi)2 =ni=1x2i+2ni=1xiyi+ni=1y2i ni=1x2i+2ni=1x2ini=1y2i+ni=1y2i using the Cauchy-Schwarz inequality

=(ni=1x2i+ni=1y2i)2 =(x2+y2)2

Thus we see: x+y22(x2+y2)2, as norms are always 0 we see:

x+y2x2+y2 - as required.