Difference between revisions of "Norm"

From Maths
Jump to: navigation, search
m
m
Line 20: Line 20:
 
Also called <math>\infty-</math>norm<br/>
 
Also called <math>\infty-</math>norm<br/>
 
<math>\|x\|_\infty=\sup(\{x_i\}_{i=1}^n)</math>
 
<math>\|x\|_\infty=\sup(\{x_i\}_{i=1}^n)</math>
 +
 +
==Equivalence of norms==
 +
Given two norms <math>\|\cdot\|_1</math> and <math>\|\cdot\|_2</math> on a [[Vector space|vector space]] {{M|V}} we say they are equivalent if:
 +
 +
<math>\exists c,C\in\mathbb{R}\ \forall x\in V:\ c\|x\|_1\le\|x\|_2\le C\|x\|_1</math>
 +
 +
We may write this as <math>\|\cdot\|_1\sim\|\cdot\|_2</math> - this is an [[Equivalence relation]]
 +
{{Todo|proof}}
 +
===Examples===
 +
*Any two norms on <math>\mathbb{R}^n</math> are equivalent
 +
*The norms <math>\|\cdot\|_{L^1}</math> and <math>\|\cdot\|_\infty</math> on <math>\mathcal{C}([0,1],\mathbb{R})</math> are not equivalent.
  
 
==Examples==
 
==Examples==

Revision as of 03:04, 8 March 2015

Definition

A norm on a vector space (V,F) is a function :VR such that:

  1. xV x0
  2. x=0x=0
  3. λF,xV λx=|λ|x where || denotes absolute value
  4. x,yV x+yx+y - a form of the triangle inequality

Often parts 1 and 2 are combined into the statement

  • x0 and x=0x=0 so only 3 requirements will be stated.

I don't like this

Common norms

The 1-norm

x1=ni=1|xi| - it's just a special case of the p-norm.

The 2-norm

x2=ni=1x2i - Also known as the Euclidean norm (see below) - it's just a special case of the p-norm.

The p-norm

xp=(ni=1|xi|p)1p (I use this notation because it can be easy to forget the p in p)

The supremum-norm

Also called norm
x=sup

Equivalence of norms

Given two norms \|\cdot\|_1 and \|\cdot\|_2 on a vector space V we say they are equivalent if:

\exists c,C\in\mathbb{R}\ \forall x\in V:\ c\|x\|_1\le\|x\|_2\le C\|x\|_1

We may write this as \|\cdot\|_1\sim\|\cdot\|_2 - this is an Equivalence relation


TODO: proof


Examples

  • Any two norms on \mathbb{R}^n are equivalent
  • The norms \|\cdot\|_{L^1} and \|\cdot\|_\infty on \mathcal{C}([0,1],\mathbb{R}) are not equivalent.

Examples

The Euclidean Norm


TODO: Migrate this norm to its own page


The Euclidean norm is denoted \|\cdot\|_2


Here for x\in\mathbb{R}^n we have:

\|x\|_2=\sqrt{\sum^n_{i=1}x_i^2}

Proof that it is a norm


TODO: proof


Part 4 - Triangle inequality

Let x,y\in\mathbb{R}^n

\|x+y\|_2^2=\sum^n_{i=1}(x_i+y_i)^2 =\sum^n_{i=1}x_i^2+2\sum^n_{i=1}x_iy_i+\sum^n_{i=1}y_i^2 \le\sum^n_{i=1}x_i^2+2\sqrt{\sum^n_{i=1}x_i^2}\sqrt{\sum^n_{i=1}y_i^2}+\sum^n_{i=1}y_i^2 using the Cauchy-Schwarz inequality

=\left(\sqrt{\sum^n_{i=1}x_i^2}+\sqrt{\sum^n_{i=1}y_i^2}\right)^2 =\left(\|x\|_2+\|y\|_2\right)^2

Thus we see: \|x+y\|_2^2\le\left(\|x\|_2+\|y\|_2\right)^2, as norms are always \ge 0 we see:

\|x+y\|_2\le\|x\|_2+\|y\|_2 - as required.