Difference between revisions of "Norm"
m |
m |
||
Line 20: | Line 20: | ||
Also called <math>\infty-</math>norm<br/> | Also called <math>\infty-</math>norm<br/> | ||
<math>\|x\|_\infty=\sup(\{x_i\}_{i=1}^n)</math> | <math>\|x\|_\infty=\sup(\{x_i\}_{i=1}^n)</math> | ||
+ | |||
+ | ==Equivalence of norms== | ||
+ | Given two norms <math>\|\cdot\|_1</math> and <math>\|\cdot\|_2</math> on a [[Vector space|vector space]] {{M|V}} we say they are equivalent if: | ||
+ | |||
+ | <math>\exists c,C\in\mathbb{R}\ \forall x\in V:\ c\|x\|_1\le\|x\|_2\le C\|x\|_1</math> | ||
+ | |||
+ | We may write this as <math>\|\cdot\|_1\sim\|\cdot\|_2</math> - this is an [[Equivalence relation]] | ||
+ | {{Todo|proof}} | ||
+ | ===Examples=== | ||
+ | *Any two norms on <math>\mathbb{R}^n</math> are equivalent | ||
+ | *The norms <math>\|\cdot\|_{L^1}</math> and <math>\|\cdot\|_\infty</math> on <math>\mathcal{C}([0,1],\mathbb{R})</math> are not equivalent. | ||
==Examples== | ==Examples== |
Revision as of 03:04, 8 March 2015
Contents
[hide]Definition
A norm on a vector space (V,F) is a function ∥⋅∥:V→R such that:
- ∀x∈V ∥x∥≥0
- ∥x∥=0⟺x=0
- ∀λ∈F,x∈V ∥λx∥=|λ|∥x∥ where |⋅| denotes absolute value
- ∀x,y∈V ∥x+y∥≤∥x∥+∥y∥ - a form of the triangle inequality
Often parts 1 and 2 are combined into the statement
- ∥x∥≥0 and ∥x∥=0⟺x=0 so only 3 requirements will be stated.
I don't like this
Common norms
The 1-norm
∥x∥1=n∑i=1|xi| - it's just a special case of the p-norm.
The 2-norm
∥x∥2=√n∑i=1x2i - Also known as the Euclidean norm (see below) - it's just a special case of the p-norm.
The p-norm
∥x∥p=(n∑i=1|xi|p)1p (I use this notation because it can be easy to forget the p in p√)
The supremum-norm
Also called ∞−norm
∥x∥∞=sup
Equivalence of norms
Given two norms \|\cdot\|_1 and \|\cdot\|_2 on a vector space V we say they are equivalent if:
\exists c,C\in\mathbb{R}\ \forall x\in V:\ c\|x\|_1\le\|x\|_2\le C\|x\|_1
We may write this as \|\cdot\|_1\sim\|\cdot\|_2 - this is an Equivalence relation
TODO: proof
Examples
- Any two norms on \mathbb{R}^n are equivalent
- The norms \|\cdot\|_{L^1} and \|\cdot\|_\infty on \mathcal{C}([0,1],\mathbb{R}) are not equivalent.
Examples
The Euclidean Norm
TODO: Migrate this norm to its own page
The Euclidean norm is denoted \|\cdot\|_2
Here for x\in\mathbb{R}^n we have:
\|x\|_2=\sqrt{\sum^n_{i=1}x_i^2}
Proof that it is a norm
TODO: proof
Part 4 - Triangle inequality
Let x,y\in\mathbb{R}^n
\|x+y\|_2^2=\sum^n_{i=1}(x_i+y_i)^2 =\sum^n_{i=1}x_i^2+2\sum^n_{i=1}x_iy_i+\sum^n_{i=1}y_i^2 \le\sum^n_{i=1}x_i^2+2\sqrt{\sum^n_{i=1}x_i^2}\sqrt{\sum^n_{i=1}y_i^2}+\sum^n_{i=1}y_i^2 using the Cauchy-Schwarz inequality
=\left(\sqrt{\sum^n_{i=1}x_i^2}+\sqrt{\sum^n_{i=1}y_i^2}\right)^2 =\left(\|x\|_2+\|y\|_2\right)^2
Thus we see: \|x+y\|_2^2\le\left(\|x\|_2+\|y\|_2\right)^2, as norms are always \ge 0 we see:
\|x+y\|_2\le\|x\|_2+\|y\|_2 - as required.