Difference between revisions of "Norm"

From Maths
Jump to: navigation, search
m
m (Made common norms into table and expanded it)
Line 11: Line 11:
  
 
==Common norms==
 
==Common norms==
===The 1-norm===
+
{| class="wikitable" border="1"
<math>\|x\|_1=\sum^n_{i=1}|x_i|</math> - it's just a special case of the p-norm.
+
|-
===The 2-norm===
+
! Name
<math>\|x\|_2=\sqrt{\sum^n_{i=1}x_i^2}</math> - Also known as the Euclidean norm (see below) - it's just a special case of the p-norm.
+
! Norm
===The p-norm===
+
! Notes
<math>\|x\|_p=\left(\sum^n_{i=1}|x_i|^p\right)^\frac{1}{p}</math> (I use this notation because it can be easy to forget the <math>p</math> in <math>\sqrt[p]{}</math>)
+
|-
===The supremum-norm===
+
!colspan="3"|Norms on <math>\mathbb{R}^n</math>
Also called <math>\infty-</math>norm<br/>
+
|-
<math>\|x\|_\infty=\sup(\{x_i\}_{i=1}^n)</math>
+
| 1-norm
 +
|<math>\|x\|_1=\sum^n_{i=1}|x_i|</math>
 +
|it's just a special case of the p-norm.
 +
|-
 +
| 2-norm
 +
|<math>\|x\|_2=\sqrt{\sum^n_{i=1}x_i^2}</math>
 +
| Also known as the Euclidean norm (see below) - it's just a special case of the p-norm.
 +
|-
 +
| p-norm
 +
|<math>\|x\|_p=\left(\sum^n_{i=1}|x_i|^p\right)^\frac{1}{p}</math>
 +
|(I use this notation because it can be easy to forget the <math>p</math> in <math>\sqrt[p]{}</math>)
 +
|-
 +
| <math>\infty-</math>norm
 +
|<math>\|x\|_\infty=\sup(\{x_i\}_{i=1}^n)</math>
 +
|Also called <math>\infty-</math>norm<br/>
 +
|-
 +
!colspan="3"|Norms on <math>\mathcal{C}([0,1],\mathbb{R})</math>
 +
|-
 +
| <math>\|\cdot\|_{L^p}</math>
 +
| <math>\|f\|_{L^p}=\left(\int^1_0|f(x)|^pdx\right)</math>
 +
| '''NOTE''' be careful extending to interval <math>[a,b]</math> as proof it is a norm relies on having a unit measure
 +
|-
 +
| <math>\infty-</math>norm
 +
| <math>\|f\|_\infty=\sup_{x\in[0,1]}(|f(x)|)</math>
 +
| Following the same spirit as the <math>\infty-</math>norm on <math>\mathbb{R}^n</math>
 +
|-
 +
| <math>\|\cdot\|_{C^k}</math>
 +
| <math>\|f\|_{C^k}=\sum^k_{i=1}\sup_{x\in[0,1]}(|f^{(i)}|)</math>
 +
| here <math>f^{(k)}</math> denotes the <math>k^\text{th}</math> derivative.
 +
|}
  
 
==Equivalence of norms==
 
==Equivalence of norms==

Revision as of 03:17, 8 March 2015

Definition

A norm on a vector space (V,F) is a function :VR such that:

  1. xV x0
  2. x=0x=0
  3. λF,xV λx=|λ|x where || denotes absolute value
  4. x,yV x+yx+y - a form of the triangle inequality

Often parts 1 and 2 are combined into the statement

  • x0 and x=0x=0 so only 3 requirements will be stated.

I don't like this

Common norms

Name Norm Notes
Norms on Rn
1-norm x1=ni=1|xi| it's just a special case of the p-norm.
2-norm x2=ni=1x2i Also known as the Euclidean norm (see below) - it's just a special case of the p-norm.
p-norm xp=(ni=1|xi|p)1p (I use this notation because it can be easy to forget the p in p)
norm x=sup Also called \infty-norm
Norms on \mathcal{C}([0,1],\mathbb{R})
\|\cdot\|_{L^p} \|f\|_{L^p}=\left(\int^1_0|f(x)|^pdx\right) NOTE be careful extending to interval [a,b] as proof it is a norm relies on having a unit measure
\infty-norm \|f\|_\infty=\sup_{x\in[0,1]}(|f(x)|) Following the same spirit as the \infty-norm on \mathbb{R}^n
\|\cdot\|_{C^k} \|f\|_{C^k}=\sum^k_{i=1}\sup_{x\in[0,1]}(|f^{(i)}|) here f^{(k)} denotes the k^\text{th} derivative.

Equivalence of norms

Given two norms \|\cdot\|_1 and \|\cdot\|_2 on a vector space V we say they are equivalent if:

\exists c,C\in\mathbb{R}\ \forall x\in V:\ c\|x\|_1\le\|x\|_2\le C\|x\|_1

We may write this as \|\cdot\|_1\sim\|\cdot\|_2 - this is an Equivalence relation


TODO: proof


Examples

  • Any two norms on \mathbb{R}^n are equivalent
  • The norms \|\cdot\|_{L^1} and \|\cdot\|_\infty on \mathcal{C}([0,1],\mathbb{R}) are not equivalent.

Examples

The Euclidean Norm


TODO: Migrate this norm to its own page


The Euclidean norm is denoted \|\cdot\|_2


Here for x\in\mathbb{R}^n we have:

\|x\|_2=\sqrt{\sum^n_{i=1}x_i^2}

Proof that it is a norm


TODO: proof


Part 4 - Triangle inequality

Let x,y\in\mathbb{R}^n

\|x+y\|_2^2=\sum^n_{i=1}(x_i+y_i)^2 =\sum^n_{i=1}x_i^2+2\sum^n_{i=1}x_iy_i+\sum^n_{i=1}y_i^2 \le\sum^n_{i=1}x_i^2+2\sqrt{\sum^n_{i=1}x_i^2}\sqrt{\sum^n_{i=1}y_i^2}+\sum^n_{i=1}y_i^2 using the Cauchy-Schwarz inequality

=\left(\sqrt{\sum^n_{i=1}x_i^2}+\sqrt{\sum^n_{i=1}y_i^2}\right)^2 =\left(\|x\|_2+\|y\|_2\right)^2

Thus we see: \|x+y\|_2^2\le\left(\|x\|_2+\|y\|_2\right)^2, as norms are always \ge 0 we see:

\|x+y\|_2\le\|x\|_2+\|y\|_2 - as required.