Difference between revisions of "Norm"

From Maths
Jump to: navigation, search
m (Made common norms into table and expanded it)
m
Line 62: Line 62:
  
 
==Examples==
 
==Examples==
===The Euclidean Norm===
+
* [[Euclidean norm]]
{{Todo|Migrate this norm to its own page}}
+
The Euclidean norm is denoted <math>\|\cdot\|_2</math>
+
 
+
 
+
Here for <math>x\in\mathbb{R}^n</math> we have:
+
 
+
<math>\|x\|_2=\sqrt{\sum^n_{i=1}x_i^2}</math>
+
====Proof that it is a norm====
+
{{Todo|proof}}
+
=====Part 4 - Triangle inequality=====
+
Let <math>x,y\in\mathbb{R}^n</math>
+
 
+
<math>\|x+y\|_2^2=\sum^n_{i=1}(x_i+y_i)^2</math>
+
<math>=\sum^n_{i=1}x_i^2+2\sum^n_{i=1}x_iy_i+\sum^n_{i=1}y_i^2</math>
+
<math>\le\sum^n_{i=1}x_i^2+2\sqrt{\sum^n_{i=1}x_i^2}\sqrt{\sum^n_{i=1}y_i^2}+\sum^n_{i=1}y_i^2</math> using the [[Cauchy-Schwarz inequality]]
+
 
+
<math>=\left(\sqrt{\sum^n_{i=1}x_i^2}+\sqrt{\sum^n_{i=1}y_i^2}\right)^2</math>
+
<math>=\left(\|x\|_2+\|y\|_2\right)^2</math>
+
 
+
Thus we see: <math>\|x+y\|_2^2\le\left(\|x\|_2+\|y\|_2\right)^2</math>, as norms are always <math>\ge 0</math> we see:
+
 
+
<math>\|x+y\|_2\le\|x\|_2+\|y\|_2</math> - as required.
+
 
+
 
{{Definition|Linear Algebra}}
 
{{Definition|Linear Algebra}}

Revision as of 03:22, 8 March 2015

Definition

A norm on a vector space (V,F) is a function :VR such that:

  1. xV x0
  2. x=0x=0
  3. λF,xV λx=|λ|x where || denotes absolute value
  4. x,yV x+yx+y - a form of the triangle inequality

Often parts 1 and 2 are combined into the statement

  • x0 and x=0x=0 so only 3 requirements will be stated.

I don't like this

Common norms

Name Norm Notes
Norms on Rn
1-norm x1=ni=1|xi| it's just a special case of the p-norm.
2-norm x2=ni=1x2i Also known as the Euclidean norm (see below) - it's just a special case of the p-norm.
p-norm xp=(ni=1|xi|p)1p (I use this notation because it can be easy to forget the p in p)
norm x=sup Also called \infty-norm
Norms on \mathcal{C}([0,1],\mathbb{R})
\|\cdot\|_{L^p} \|f\|_{L^p}=\left(\int^1_0|f(x)|^pdx\right) NOTE be careful extending to interval [a,b] as proof it is a norm relies on having a unit measure
\infty-norm \|f\|_\infty=\sup_{x\in[0,1]}(|f(x)|) Following the same spirit as the \infty-norm on \mathbb{R}^n
\|\cdot\|_{C^k} \|f\|_{C^k}=\sum^k_{i=1}\sup_{x\in[0,1]}(|f^{(i)}|) here f^{(k)} denotes the k^\text{th} derivative.

Equivalence of norms

Given two norms \|\cdot\|_1 and \|\cdot\|_2 on a vector space V we say they are equivalent if:

\exists c,C\in\mathbb{R}\ \forall x\in V:\ c\|x\|_1\le\|x\|_2\le C\|x\|_1

We may write this as \|\cdot\|_1\sim\|\cdot\|_2 - this is an Equivalence relation


TODO: proof


Examples

  • Any two norms on \mathbb{R}^n are equivalent
  • The norms \|\cdot\|_{L^1} and \|\cdot\|_\infty on \mathcal{C}([0,1],\mathbb{R}) are not equivalent.

Examples