Difference between revisions of "Outer-measure"
From Maths
(Created page with " ==Definition== <math>\mu^*=\text{Inf}\left\{\sum^\infty_{n=1}\mu(E_n)|E_n\in R\ \forall n,\ E\subset\bigcup^\infty_{n=1}E_n\right\}</math> {{Definition|Measure Theory}}") |
m |
||
Line 1: | Line 1: | ||
− | + | {{Stub page|Saving work, not even a stub yet!}} | |
==Definition== | ==Definition== | ||
− | <math>\mu^*=\text{Inf}\left\{\sum^\infty_{n=1}\mu(E_n) | + | An ''outer-measure'', {{M|\mu^*}} is a [[set function]] from a [[hereditary sigma-ring|hereditary {{sigma|ring}}]], {{M|\mathcal{H} }}, to the (positive) [[extended real value|extended real values]], {{M|\bar{\mathbb{R} }_{\ge0} }}, that is{{rMTH}}: |
− | + | * {{M|\forall A\in\mathcal{H}[\mu^*(A)\ge 0]}} - non-negative | |
+ | * {{M|\forall A,B\in\mathcal{H}[A\subseteq B\implies \mu^*(A)\le\mu^*(B)]}} - [[monotonic]] | ||
+ | * {{MSeq|A_n|in=\mathcal{H}|pre=\forall|post=[\mu^*(\bigcup_{n=1}^\infty A_n)\le\sum^\infty_{n=1}\mu^*(A_n)]}} - [[countably subadditive]] | ||
+ | In words, {{M|\mu^*}} is: | ||
+ | * an ''[[extended real valued]]'' [[countably subadditive set function]] that is [[monotonic]] and non-negative with the property: {{M|1=\mu^*(\emptyset)=0}} defined on a [[hereditary sigma-ring|hereditary {{sigma|ring}}]] | ||
+ | ==For every [[pre-measure]]== | ||
+ | <math>\mu^*=\text{Inf}\left.\left\{\sum^\infty_{n=1}\bar{\mu(E_n)}\right\vert E_n\in R\ \forall n,\ E\subset\bigcup^\infty_{n=1}E_n\right\}</math> is an outer measure. | ||
+ | ==References== | ||
+ | <references/> | ||
+ | {{Measure theory navbox|plain}} | ||
{{Definition|Measure Theory}} | {{Definition|Measure Theory}} |
Revision as of 17:43, 8 April 2016
(Unknown grade)
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Saving work, not even a stub yet!
Definition
An outer-measure, μ∗ is a set function from a hereditary σ-ring, H, to the (positive) extended real values, ˉR≥0, that is[1]:
- ∀A∈H[μ∗(A)≥0] - non-negative
- ∀A,B∈H[A⊆B⟹μ∗(A)≤μ∗(B)] - monotonic
- ∀(An)∞n=1⊆H[μ∗(⋃∞n=1An)≤∑∞n=1μ∗(An)] - countably subadditive
In words, μ∗ is:
- an extended real valued countably subadditive set function that is monotonic and non-negative with the property: μ∗(∅)=0 defined on a hereditary σ-ring
For every pre-measure
μ∗=Inf{∞∑n=1¯μ(En)|En∈R ∀n, E⊂∞⋃n=1En} is an outer measure.
References
|