Difference between revisions of "Relation"

From Maths
Jump to: navigation, search
m (Removing old page (have never used it in 7 months, safe to say it is obsolete), fixed references)
(Types of relation: Added anchor tags to table.)
Line 46: Line 46:
 
! Notes
 
! Notes
 
|-
 
|-
! Reflexive<ref name="APIKM"/>
+
! {{Anchor|Type_reflexive}}Reflexive<ref name="APIKM"/>
 
| {{M|\text{id}_X\subseteq\mathcal{R} }}
 
| {{M|\text{id}_X\subseteq\mathcal{R} }}
 
| {{M|\forall x\in X[x\mathcal{R}x]}}
 
| {{M|\forall x\in X[x\mathcal{R}x]}}
 
| Every element is related to itself (example, equality)
 
| Every element is related to itself (example, equality)
 
|-
 
|-
! Symmetric<ref name="APIKM"/>
+
! {{Anchor|Type_symmetricc}}Symmetric<ref name="APIKM"/>
 
| {{M|\mathcal{R}\subseteq\mathcal{R}^{-1} }}
 
| {{M|\mathcal{R}\subseteq\mathcal{R}^{-1} }}
 
| {{M|\forall x\in X\forall y\in X[x\mathcal{R}y\implies y\mathcal{R}x]}}
 
| {{M|\forall x\in X\forall y\in X[x\mathcal{R}y\implies y\mathcal{R}x]}}
 
| (example, equality)
 
| (example, equality)
 
|-
 
|-
! Transitive<ref name="APIKM"/>
+
! {{Anchor|Type_transitive}}Transitive<ref name="APIKM"/>
 
| {{M|\mathcal{R}\circ\mathcal{R}\subseteq\mathcal{R} }}
 
| {{M|\mathcal{R}\circ\mathcal{R}\subseteq\mathcal{R} }}
 
| {{M|\forall x,y,z\in X[(x\mathcal{R}y\wedge y\mathcal{R}z)\implies x\mathcal{R}z]}}
 
| {{M|\forall x,y,z\in X[(x\mathcal{R}y\wedge y\mathcal{R}z)\implies x\mathcal{R}z]}}
 
| (example, equality, {{M|<}})
 
| (example, equality, {{M|<}})
 
|-
 
|-
! Antisymmetric<ref name="RAAA">Real and Abstract Analysis - Edwin Hewitt and Karl Stromberg</ref><br/>({{AKA}} Identitive<ref name="APIKM"/>)
+
! {{Anchor|Type_antisymmetric|Type_identitive}}Antisymmetric<ref name="RAAA">Real and Abstract Analysis - Edwin Hewitt and Karl Stromberg</ref><br/>({{AKA}} Identitive<ref name="APIKM"/>)
 
| {{M|\mathcal{R}\cap\mathcal{R}^{-1}\subseteq\text{id}_X}}
 
| {{M|\mathcal{R}\cap\mathcal{R}^{-1}\subseteq\text{id}_X}}
 
| {{M|1=\forall x\in X\forall y\in X[(x\mathcal{R}y\wedge y\mathcal{R}x)\implies x=y]}}
 
| {{M|1=\forall x\in X\forall y\in X[(x\mathcal{R}y\wedge y\mathcal{R}x)\implies x=y]}}
 
| {{Todo|What about a relation like 1r2 1r1 2r1 and 2r2}}
 
| {{Todo|What about a relation like 1r2 1r1 2r1 and 2r2}}
 
|-
 
|-
! Connected<ref name="APIKM"/>
+
! {{Anchor|Type_connected}}Connected<ref name="APIKM"/>
 
| {{M|1=\mathcal{R}\cup\mathcal{R}^{-1}=X\times X}}
 
| {{M|1=\mathcal{R}\cup\mathcal{R}^{-1}=X\times X}}
 
|
 
|
 
| {{Todo|Work out what this means}}
 
| {{Todo|Work out what this means}}
 
|-
 
|-
! Asymmetric<ref name="APIKM"/>
+
! {{Anchor|Type_asymmetric}}Asymmetric<ref name="APIKM"/>
 
| {{M|1=\mathcal{R}\subseteq\complement(\mathcal{R}^{-1})}}
 
| {{M|1=\mathcal{R}\subseteq\complement(\mathcal{R}^{-1})}}
 
| {{M|1=\forall x\in X\forall y\in X[x\mathcal{R}y\implies (y,x)\notin\mathcal{R}]}}
 
| {{M|1=\forall x\in X\forall y\in X[x\mathcal{R}y\implies (y,x)\notin\mathcal{R}]}}
 
| Like {{M|<}} (see: [[Contrapositive]])
 
| Like {{M|<}} (see: [[Contrapositive]])
 
|-
 
|-
! Right-unique<ref name="APIKM"/>
+
! {{Anchor|Type_right-unique}}Right-unique<ref name="APIKM"/>
 
| {{M|1=\mathcal{R}^{-1}\circ\mathcal{R}\subseteq\text{id}_X}}
 
| {{M|1=\mathcal{R}^{-1}\circ\mathcal{R}\subseteq\text{id}_X}}
 
| {{M|1=\forall x,y,z\in X[(x\mathcal{R}y\wedge x\mathcal{R}z)\implies y=z]}}
 
| {{M|1=\forall x,y,z\in X[(x\mathcal{R}y\wedge x\mathcal{R}z)\implies y=z]}}
 
| This is the definition of a [[function]]
 
| This is the definition of a [[function]]
 
|-
 
|-
! Left-unique<ref name="APIKM"/>
+
! {{Anchor|Type_left-unique}}Left-unique<ref name="APIKM"/>
 
| {{M|1=\mathcal{R}\circ\mathcal{R}^{-1}\subseteq\text{id}_X}}
 
| {{M|1=\mathcal{R}\circ\mathcal{R}^{-1}\subseteq\text{id}_X}}
 
| {{M|1=\forall x,y,z\in X[(x\mathcal{R}y\wedge z\mathcal{R}y)\implies x=z]}}
 
| {{M|1=\forall x,y,z\in X[(x\mathcal{R}y\wedge z\mathcal{R}y)\implies x=z]}}
 
|
 
|
 
|-
 
|-
! Mutually unique<ref name="APIKM"/>
+
! {{Anchor|Type_mutually-unique}}Mutually unique<ref name="APIKM"/>
 
| Both right and left unique
 
| Both right and left unique
 
|
 
|
 
| {{Todo|Investigate}}
 
| {{Todo|Investigate}}
 
|}
 
|}
 +
 
==Examples of binary relations==
 
==Examples of binary relations==
 
* [[Function|Functions / mappings]]
 
* [[Function|Functions / mappings]]

Revision as of 20:02, 20 April 2016

Definition

A binary relation R (or just a relation R[Note 1]) between two sets is a subset of the Cartesian product of two sets[1][2], that is:

  • RX×Y

We say that R is a relation in X[1] if:

  • RX×X (note that R is sometimes[1] called a graph)
    • For example < is a relation in the set of Z (the integers)


If (x,y)R then we:

  • Say: x is in relation R with y
  • Write: xRy for short.

Operations

Here R is a relation between X and Y, that is RX×Y, and SY×Z

Name Notation Definition
NO IDEA PXR[1] PXR={xX| y: xRy} - a function is (among other things) a case where PXf=X
Inverse relation R1[1] R1:={(y,x)Y×X| xRy}
Composing relations RS[1] RS:={(x,z)X×Z| yY[xRyySz]}

Simple examples of relations

  1. The empty relation[1], X×X is of course a relation
  2. The total relation[1], R=X×X that relates everything to everything
  3. The identity relation[1], idX:=id:={(x,y)X×X|x=y}={(x,x)X×X|xX}
    • This is also known as[1] the diagonal of the square X×X

Types of relation

Here RX×X

Name Set relation Statement Notes
Reflexive[1] idXR xX[xRx] Every element is related to itself (example, equality)
Symmetric[1] RR1 xXyX[xRyyRx] (example, equality)
Transitive[1] RRR x,y,zX[(xRyyRz)xRz] (example, equality, <)
Antisymmetric[3]
(AKA Identitive[1])
RR1idX xXyX[(xRyyRx)x=y]

TODO: What about a relation like 1r2 1r1 2r1 and 2r2


Connected[1] RR1=X×X

TODO: Work out what this means


Asymmetric[1] R(R1) xXyX[xRy(y,x)R] Like < (see: Contrapositive)
Right-unique[1] R1RidX x,y,zX[(xRyxRz)y=z] This is the definition of a function
Left-unique[1] RR1idX x,y,zX[(xRyzRy)x=z]
Mutually unique[1] Both right and left unique

TODO: Investigate


Examples of binary relations

Notes

  1. Jump up A binary relation should be assumed if just relation is specified

References

  1. Jump up to: 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 Analysis - Part 1: Elements - Krzysztof Maurin
  2. Jump up Types and Programming Languages - Benjamin C. Peirce
  3. Jump up Real and Abstract Analysis - Edwin Hewitt and Karl Stromberg