Difference between revisions of "Continuous map"
m |
m (→Continuous at a point: Removed nonsense.) |
||
Line 26: | Line 26: | ||
Again, given two [[topological space|topological spaces]] {{M|(X,\mathcal{J})}} and {{M|(Y,\mathcal{K})}}, and a point {{M|x_0\in X}}, we say the [[map]] {{M|f:X\rightarrow Y}} is ''continuous at {{M|x_0}}'' if<ref name="KMAPI"/>: | Again, given two [[topological space|topological spaces]] {{M|(X,\mathcal{J})}} and {{M|(Y,\mathcal{K})}}, and a point {{M|x_0\in X}}, we say the [[map]] {{M|f:X\rightarrow Y}} is ''continuous at {{M|x_0}}'' if<ref name="KMAPI"/>: | ||
* {{M|\forall N\subseteq Y}}[[neighbourhood|{{M|\text{ neighbourhood to } }}]]{{M|f(x_0)[f^{-1}(N)\text{ is a neighbourhood of }x_0]}} | * {{M|\forall N\subseteq Y}}[[neighbourhood|{{M|\text{ neighbourhood to } }}]]{{M|f(x_0)[f^{-1}(N)\text{ is a neighbourhood of }x_0]}} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
===Claim 1=== | ===Claim 1=== | ||
{{Begin Theorem}} | {{Begin Theorem}} |
Revision as of 12:19, 11 May 2016
- Note: there are a few different conditions for continuity, there's also continuity at a point. This diagram is supposed to show how they relate to each other.
|
Note that:
|
Overview | Key |
---|
Contents
[hide]Definition
Given two topological spaces (X,J) and (Y,K) we say that a map, f:X→Y is continuous if[1]:
- ∀O∈K[f−1(O)∈J]
That is to say:
- The pre-image of every set open in Y under f is open in X
Continuous at a point
Again, given two topological spaces (X,J) and (Y,K), and a point x0∈X, we say the map f:X→Y is continuous at x0 if[1]:
- ∀N⊆Y neighbourhood to f(x0)[f−1(N) is a neighbourhood of x0]
Claim 1
Sequentially continuous at a point
Given two topological spaces (X,J) and (Y,K), and a point x0∈X, a function f:X→Y is said to be continuous at x0 if[1]:
- ∀(xn)∞n=1[lim (Recall that (x_n)_{n=1}^\infty denotes a sequence, see Limit (sequence) for information on limits)
Claim 2
Claim: f is continuous at x_0 using the neighbourhood definition \iff it is continuous at x_0 using the sequential definition
References
- ↑ Jump up to: 1.0 1.1 1.2 Krzysztof Maurin - Analysis - Part 1: Elements
Old page
First form
The first form:
f:A\rightarrow B is continuous at a if:
\forall\epsilon>0\exists\delta>0:|x-a|<\delta\implies|f(x)-f(a)|<\epsilon (note the implicit \forall x\in A)
Second form
Armed with the knowledge of what a metric space is (the notion of distance), you can extend this to the more general:
f:(A,d)\rightarrow(B,d') is continuous at a if:
\forall\epsilon>0\exists\delta>0:d(x,a)<\delta\implies d'(f(x),f(a))<\epsilon
\forall\epsilon>0\exists\delta>0:x\in B_\delta(a)\implies f(x)\in B_\epsilon(f(a))
In both cases the implicit \forall x is present. Basic type inference (the B_\epsilon(f(a)) is a ball about f(a)\in B thus it is a ball in B using the metric d')
Third form
The most general form, continuity between topologies
f:(A,\mathcal{J})\rightarrow(B,\mathcal{K}) is continuous if
\forall U\in\mathcal{K}\ f^{-1}(U)\in\mathcal{J} - that is the pre-image of all open sets in (A,\mathcal{J}) is open.