Difference between revisions of "Passing to the quotient (function)"
From Maths
m (Alec moved page Factor (function) to Passing to the quotient (function): Name makes more sense) |
(Reclassified as theorem, cleaned up formatting, cleaned up writing style. Moved diagram into subpage, added explanation, corrected notation, basically redone it all!) |
||
Line 1: | Line 1: | ||
− | == | + | {{Refactor notice|review=true}} |
− | Given a function, {{M|f:X\rightarrow Y}} and another function, {{M|w:X\rightarrow W}} | + | : See [[Passing to the quotient]] for a disambiguation of this term. |
− | + | __TOC__ | |
− | + | ==Statement== | |
− | + | {{float-right|{{/Diagram}}|style=max-width:20em;}}Given a function, {{M|f:X\rightarrow Y}} and another function, {{M|w:X\rightarrow W}}<ref group="Note">I have chosen {{M|W}} to mean "whatever"</ref> then "''{{M|f}} may be factored through {{M|w}}''" if<ref>Alec's own work, "distilled" from [[passing to the quotient (topology)]] which is defined by Mond (2013, Topology) and Lee (Intro to Top manifolds), by further abstracting the claim</ref>: | |
− | + | * {{M|f}} is constant on the {{plural|fibre|s}} of {{M|w}}<ref group="Note">We can state this in 2 other equivalent ways: | |
− | + | # <math>\forall x,y\in X[w(x)=w(y)\implies f(x)=f(y)]</math> | |
− | {| | + | # <math>\forall x,y\in X[f(x)\ne f(y)\implies w(x)\ne w(y)]</math> |
− | | | + | See [[equivalent conditions to being constant on the fibres of a map]] for proofs and more details</ref><!-- |
− | | | + | |
− | + | END OF NOTE ON CONSTANT-ON-FIBRE PART | |
− | \ | + | --> |
− | + | If this condition is met then {{M|f}} ''induces'' a [[mapping]], {{M|\tilde{f}:W\rightarrow Y }}, such that <math>f=\tilde{f}\circ w</math> (equivalently, the diagram on the right [[Commutative diagram|commutes]]). | |
− | + | * {{M|\tilde{f}:W\rightarrow X}} may be given explicitly as: {{M|1=\tilde{f}:v\mapsto f(w^{-1}(v))}}<ref group="Note">Of course, only {{plural|bijection|s}} have {{plural|inverse function|s}}, we indulge in the common practice of using {{M|w^{-1}(v)}} to mean {{M|w^{-1}(\{v\})}}, in general for [[sets]] {{M|A}} and {{M|B}} and a [[mapping]] {{M|f:A\rightarrow B}} we use {{M|f^{-1}(C)}} to denote (for some {{M|C\in\mathcal{P}(B)}} (a [[subset of]] {{M|X}})) the {{link|pre-image|map}} of {{M|C}} under the [[function]] {{M|f}}, {{M|1=f^{-1}(C):=\{a\in A\ \vert\ f(a)\in C\} }}. Just as for {{M|D\in\mathcal{P}(A)}} (a subset of {{M|A}}) we use {{M|f(D)}} to denote the {{link|image|function}} of {{M|D}} under {{M|f}}, namely: {{M|1=f(D):=\{f(d)\in B\ \vert\ d\in D\} }} | |
− | } | + | {{Warning box|1=Writing {{M|\tilde{f}:v\mapsto f(w^{-1}(v))}} is dangerous as it may not be "''[[well-defined]]''"|2=A [[function]] (considered as a [[relation]]) of the form {{M|f:X\rightarrow Y}} must associate every {{M|x\in X}} with exactly one {{M|y\in Y}}. |
− | + | ||
− | + | Suppose that {{M|1=w^{-1}(v)}} is [[empty-set|empty]] or contains 2 (or more!) elements, then what do we define {{M|\tilde{f} }} as? | |
− | |- | + | |
− | + | As it turns out it doesn't matter, but is really important to see why we must be so careful! This is why we require {{M|f}} to be constant on the fibres of {{M|w}}, as if we have {{M|1=w(x)=w(y)}} but {{M|f(x)\ne f(y)}} then no function composed with {{M|w}} can ever be equal to {{M|f}}! | |
− | |} | + | * Suppose that {{M|g:W\rightarrow Y}} is such that {{M|1=f=g\circ w}}, then {{M|1=f(x)=g(w(x))}}, and we have {{M|1=f(x)\ne f(y)}}, then: |
− | + | ** {{M|1=w(x)=w(y)}} so we must have {{M|1=g(w(x))=g(w(y))}}, so we must have {{M|1=f(x)=f(y)}}! A contradiction! | |
− | + | Lastly note the alternate forms of the "constant on fibres" (in the note above) is ''very'' similar to the definition of a function being [[injective]] | |
− | + | {{Todo|Develop that last thought}}}}</ref> | |
− | + | ** We may also write {{M|1=\tilde{f}=f\circ w^{-1} }} but this is a significant abuse of notation and should be avoided! It is safe to use here because of the "well-defined"-ness of {{M|\tilde{f} }} | |
− | + | We may then say: | |
− | == | + | * "''{{M|f}} may be factored through {{M|w}} to {{M|\tilde{f} }}''" or "{{M|f}} descends to the quotient via {{M|w}} to give {{M|\tilde{f} }}" |
+ | '''Claims: ''' | ||
+ | # {{M|\tilde{f}:W\rightarrow Y}} is given unambiguously by {{M|\tilde{f}:v\mapsto f(w^{-1}(v))}} | ||
+ | # If {{M|w:X\rightarrow W}} is [[surjective]] then {{M|\tilde{f}:W\rightarrow Y}} is unique - the only function {{M|(:W\rightarrow Y)}} such that the diagram commutes | ||
+ | # If {{M|f:X\rightarrow Y}} is [[surjective]] then {{M|\tilde{f}:W\rightarrow Y}} is [[surjective]] also | ||
+ | ==Caveats== | ||
+ | The following are good points to keep in mind when dealing with situations like this: | ||
* Remembering the requirements: | * Remembering the requirements: | ||
− | *: We want to induce a function {{M|\tilde{f}:W\rightarrow Y}} | + | *: We want to induce a function {{M|\tilde{f}:W\rightarrow Y}} such that all the information of {{M|f}} is "distilled" into {{M|w}}, notice that: |
− | *: | + | *:* if {{M|1=w(x)=w(y)}} then {{M|1=\tilde{f}(w(x))=\tilde{f}(w(y))}} just by composition of {{plural|function|s}}, regardless of {{M|\tilde{f} }}! |
+ | *:* so if {{M|1=f(x)\ne f(y)}} but {{M|1=w(x)=w(y)}} then we're screwed and cannot use this. | ||
+ | *: So it is easy to see that we require {{M|1=[w(x)=w(y)]\implies[f(x)=f(y)]}} in order to proceed. | ||
==Proof of claims== | ==Proof of claims== | ||
+ | {{Requires proof|grade=A|msg=Most of the proofs are done, I've done the surjective one like 3 times (CHECK THE TALK PAGE! SO YOU DON'T DO IT A FOURTH!) Also: | ||
+ | * Move the proofs into sub-pages. It is just so much neater!}} | ||
{{Begin Theorem}} | {{Begin Theorem}} | ||
Claim: the induced function, {{M|\tilde{f} }} exists and is given unambiguously by {{M|\tilde{f}:v\mapsto f(w^{-1}(v))}} | Claim: the induced function, {{M|\tilde{f} }} exists and is given unambiguously by {{M|\tilde{f}:v\mapsto f(w^{-1}(v))}} | ||
Line 73: | Line 83: | ||
{{End Proof}} | {{End Proof}} | ||
{{End Theorem}} | {{End Theorem}} | ||
+ | ==See also== | ||
+ | * [[Passing to the quotient]] - disambiguation page | ||
+ | * [[Equivalent conditions to being constant on the fibres of a map]] | ||
+ | {{Todo|Factoring a map through the canonical projection of the equivalence relation it generates}} | ||
+ | ==Notes== | ||
+ | <references group="Note"/> | ||
==References== | ==References== | ||
<references/> | <references/> | ||
− | {{ | + | {{Theorem Of|Elementary Set Theory|Set Theory}} |
Revision as of 22:10, 8 October 2016
This page is currently being refactored (along with many others)
Please note that this does not mean the content is unreliable. It just means the page doesn't conform to the style of the site (usually due to age) or a better way of presenting the information has been discovered.
This page is waiting for a final review, then this notice will be removed.
This page is waiting for a final review, then this notice will be removed.
- See Passing to the quotient for a disambiguation of this term.
Statement
Given a function, f:X→Y and another function, w:X→W[Note 1] then "f may be factored through w" if[1]:If this condition is met then f induces a mapping, ˜f:W→Y, such that f=˜f∘w (equivalently, the diagram on the right commutes).
- ˜f:W→X may be given explicitly as: ˜f:v↦f(w−1(v))[Note 3]
- We may also write ˜f=f∘w−1 but this is a significant abuse of notation and should be avoided! It is safe to use here because of the "well-defined"-ness of ˜f
We may then say:
- "f may be factored through w to ˜f" or "f descends to the quotient via w to give ˜f"
Claims:
- ˜f:W→Y is given unambiguously by ˜f:v↦f(w−1(v))
- If w:X→W is surjective then ˜f:W→Y is unique - the only function (:W→Y) such that the diagram commutes
- If f:X→Y is surjective then ˜f:W→Y is surjective also
Caveats
The following are good points to keep in mind when dealing with situations like this:
- Remembering the requirements:
- We want to induce a function ˜f:W→Y such that all the information of f is "distilled" into w, notice that:
- if w(x)=w(y) then ˜f(w(x))=˜f(w(y)) just by composition of functions, regardless of ˜f!
- so if f(x)≠f(y) but w(x)=w(y) then we're screwed and cannot use this.
- So it is easy to see that we require [w(x)=w(y)]⟹[f(x)=f(y)] in order to proceed.
- We want to induce a function ˜f:W→Y such that all the information of f is "distilled" into w, notice that:
Proof of claims
Grade: A
This page requires one or more proofs to be filled in, it is on a to-do list for being expanded with them.
Please note that this does not mean the content is unreliable. Unless there are any caveats mentioned below the statement comes from a reliable source. As always, Warnings and limitations will be clearly shown and possibly highlighted if very important (see template:Caution et al).
The message provided is:
The message provided is:
Most of the proofs are done, I've done the surjective one like 3 times (CHECK THE TALK PAGE! SO YOU DON'T DO IT A FOURTH!) Also:
- Move the proofs into sub-pages. It is just so much neater!
[<collapsible-expand>]
Claim: the induced function, ˜f exists and is given unambiguously by ˜f:v↦f(w−1(v))
[<collapsible-expand>]
Claim: if w is surjective then the induced ˜f is unique
See also
- Passing to the quotient - disambiguation page
- Equivalent conditions to being constant on the fibres of a map
TODO: Factoring a map through the canonical projection of the equivalence relation it generates
Notes
- <cite_references_link_accessibility_label> ↑ I have chosen W to mean "whatever"
- <cite_references_link_accessibility_label> ↑ We can state this in 2 other equivalent ways:
- ∀x,y∈X[w(x)=w(y)⟹f(x)=f(y)]
- ∀x,y∈X[f(x)≠f(y)⟹w(x)≠w(y)]
- <cite_references_link_accessibility_label> ↑ Of course, only bijections have inverse functions, we indulge in the common practice of using w−1(v) to mean w−1({v}), in general for sets A and B and a mapping f:A→B we use f−1(C) to denote (for some C∈P(B) (a subset of X)) the pre-image of C under the function f, f−1(C):={a∈A | f(a)∈C}. Just as for D∈P(A) (a subset of A) we use f(D) to denote the image of D under f, namely: f(D):={f(d)∈B | d∈D}
References
- <cite_references_link_accessibility_label> ↑ Alec's own work, "distilled" from passing to the quotient (topology) which is defined by Mond (2013, Topology) and Lee (Intro to Top manifolds), by further abstracting the claim
- ↑ <cite_references_link_many_accessibility_label> 2.0 2.1 This is my (Alec's) own work
Categories:
- Todo
- Refactoring
- Refactoring (unknown grade)
- Refactoring pages pending final review
- Pages requiring proofs
- Theorems
- Theorems, lemmas and corollaries
- Elementary Set Theory Theorems
- Elementary Set Theory Theorems, lemmas and corollaries
- Elementary Set Theory
- Set Theory Theorems
- Set Theory Theorems, lemmas and corollaries
- Set Theory