Difference between revisions of "Homotopy class"

From Maths
Jump to: navigation, search
(Created page with " ==Definition== The relation of paths being end-point-preserving homotopic is an Equivalence relation<ref>Introduction to topology - Second Edition - T...")
 
m
 
Line 7: Line 7:
 
* Symmetric: {{M|\alpha\simeq\beta\text{ rel}\{0,1\}\implies \beta\simeq\alpha\text{ rel}\{0,1\} }}
 
* Symmetric: {{M|\alpha\simeq\beta\text{ rel}\{0,1\}\implies \beta\simeq\alpha\text{ rel}\{0,1\} }}
 
* Transitive: {{M|\alpha\simeq\beta\text{ rel}\{0,1\}\wedge\beta\simeq\gamma\text{ rel}\{0,1\}\implies \alpha\simeq\gamma\text{ rel}\{0,1\} }}
 
* Transitive: {{M|\alpha\simeq\beta\text{ rel}\{0,1\}\wedge\beta\simeq\gamma\text{ rel}\{0,1\}\implies \alpha\simeq\gamma\text{ rel}\{0,1\} }}
 +
 +
The [[Equivalence class|equivalence class]] of {{M|\alpha}} is denoted (as is usual) by {{M|[\alpha]}}
 +
==Important properties==
 +
{{M|\alpha,\ \beta}} and {{M|\gamma}} denote paths
 +
 +
 +
* For a [[Continuous map|continuous map]] {{M|p:[0,1]\rightarrow[0,1]}} with {{M|1=p(0)=0}} and {{M|1=p(1)=1}} we have:
 +
*: {{M|1=[\alpha\circ p]=[\alpha]}} - that is ''any [[Reparametrisation|reparametrisation]] of {{M|\alpha}} is [[Homotopic paths|homotopic]] to {{M|\alpha}}''
 +
* <math>[\alpha_1]=[\alpha_2]\wedge[\beta_1]=[\beta_2]\implies[\alpha_1\beta_1]=[\alpha_2\beta_2]</math>
 +
** This allows us to define multiplication
 +
* <math>(\alpha\beta)\gamma\simeq\alpha(\beta\gamma)\text{ rel}\{0,1\}</math> or <math>([\alpha][\beta])[\gamma]=[\alpha]([\beta][\gamma])</math>
 +
** This allows us to define associativity
 +
* Where {{M|a}} is the constant loop at {{M|a}} (ie {{M|1=a(t)=a\ \forall t\in[0,1]}}) we have
 +
*: <math>a\alpha\simeq\alpha\simeq\alpha b\text{ rel}\{0,1\}</math> or <math>[a][\alpha]=[\alpha]=[\alpha][b]</math>
 +
* if {{M|\alpha^{-1} }} is the reverse path of {{M|\alpha}}, literally {{M|1=\alpha^{-1}(t)=\alpha(1-t)}} then
 +
** {{M|1=[\alpha_0]=[\alpha_1]\implies[\alpha_0^{-1}]=[\alpha_1^{-1}]}}
 +
*** we can now define the inverse, {{M|1=[\alpha^{-1}]=[\alpha]^{-1} }}
 +
* {{M|1=[\alpha][\alpha]^{-1}=[a]}}
 +
 +
{{Todo|Proofs for all of these p117}}
  
 
==See also==
 
==See also==

Latest revision as of 02:37, 17 April 2015

Definition

The relation of paths being end-point-preserving homotopic is an Equivalence relation[1]

That is αβ rel{0,1} where α and β are paths from a to b (which are not necessarily distinct as it may be a loop) is an equivalence relation, which is to say:

  • Reflexive: αα rel{0,1}
  • Symmetric: αβ rel{0,1}βα rel{0,1}
  • Transitive: αβ rel{0,1}βγ rel{0,1}αγ rel{0,1}

The equivalence class of α is denoted (as is usual) by [α]

Important properties

α, β and γ denote paths


  • For a continuous map p:[0,1][0,1] with p(0)=0 and p(1)=1 we have:
    [αp]=[α] - that is any reparametrisation of α is homotopic to α
  • [α1]=[α2][β1]=[β2][α1β1]=[α2β2]
    • This allows us to define multiplication
  • (αβ)γα(βγ) rel{0,1} or ([α][β])[γ]=[α]([β][γ])
    • This allows us to define associativity
  • Where a is the constant loop at a (ie a(t)=a t[0,1]) we have
    aαααb rel{0,1} or [a][α]=[α]=[α][b]
  • if α1 is the reverse path of α, literally α1(t)=α(1t) then
    • [α0]=[α1][α10]=[α11]
      • we can now define the inverse, [α1]=[α]1
  • [α][α]1=[a]



TODO: Proofs for all of these p117



See also

References

  1. Jump up Introduction to topology - Second Edition - Theodore W. Gamelin and Rober Everist Greene