Difference between revisions of "Norm"

From Maths
Jump to: navigation, search
m (Equivalence of norms)
m (Equivalence of norms)
Line 30: Line 30:
 
<math>\exists c,C\in\mathbb{R}\text{ with }c,C>0\ \forall x\in V:\ c\|x\|_1\le\|x\|_2\le C\|x\|_1</math>
 
<math>\exists c,C\in\mathbb{R}\text{ with }c,C>0\ \forall x\in V:\ c\|x\|_1\le\|x\|_2\le C\|x\|_1</math>
  
We may write this as <math>\|\cdot\|_1\sim\|\cdot\|_2</math> - this is an [[Equivalence relation]]
+
{{Begin Theorem}}
 +
Theorem: This is an [[Equivalence relation]] - so we may write this as <math>\|\cdot\|_1\sim\|\cdot\|_2</math>
 +
{{Begin Proof}}
 
{{Todo|proof}}
 
{{Todo|proof}}
 
+
{{End Proof}}
 +
{{End Theorem}}
 
Note also that if <math>\|\cdot\|_1</math> is both weaker and stronger than <math>\|\cdot\|_2</math> they are equivalent
 
Note also that if <math>\|\cdot\|_1</math> is both weaker and stronger than <math>\|\cdot\|_2</math> they are equivalent
 
===Examples===
 
===Examples===

Revision as of 09:19, 28 April 2015

An understanding of a norm is needed to proceed to linear isometries

Normed vector spaces

A normed vector space is a vector space equipped with a norm V, it may be denoted (V,V,F)

Definition

A norm on a vector space (V,F) is a function :VR such that:

  1. xV x0
  2. x=0x=0
  3. λF,xV λx=|λ|x where || denotes absolute value
  4. x,yV x+yx+y - a form of the triangle inequality

Often parts 1 and 2 are combined into the statement

  • x0 and x=0x=0 so only 3 requirements will be stated.

I don't like this

Norms may define a metric space

To get a metric space from a norm simply define d(x,y)=xy

HOWEVER: It is only true that a normed vector space is a metric space also, given a metric we may not be able to get an associated norm.

Weaker and stronger norms

Given a norm 1 and another 2 we say:

  • 1 is weaker than 2 if C>0xV such that x1Cx2
  • 2 is stronger than 1 in this case

Equivalence of norms

Given two norms 1 and 2 on a vector space V we say they are equivalent if:

c,CR with c,C>0 xV: cx1x2Cx1

[Expand]

Theorem: This is an Equivalence relation - so we may write this as 12

Note also that if 1 is both weaker and stronger than 2 they are equivalent

Examples

  • Any two norms on Rn are equivalent
  • The norms L1 and on C([0,1],R) are not equivalent.

Common norms

Name Norm Notes
Norms on Rn
1-norm x1=ni=1|xi| it's just a special case of the p-norm.
2-norm x2=ni=1x2i Also known as the Euclidean norm (see below) - it's just a special case of the p-norm.
p-norm xp=(ni=1|xi|p)1p (I use this notation because it can be easy to forget the p in p)
norm x=sup Also called \infty-norm
Norms on \mathcal{C}([0,1],\mathbb{R})
\|\cdot\|_{L^p} \|f\|_{L^p}=\left(\int^1_0|f(x)|^pdx\right)^\frac{1}{p} NOTE be careful extending to interval [a,b] as proof it is a norm relies on having a unit measure
\infty-norm \|f\|_\infty=\sup_{x\in[0,1]}(|f(x)|) Following the same spirit as the \infty-norm on \mathbb{R}^n
\|\cdot\|_{C^k} \|f\|_{C^k}=\sum^k_{i=1}\sup_{x\in[0,1]}(|f^{(i)}|) here f^{(k)} denotes the k^\text{th} derivative.
Induced norms
Pullback norm \|\cdot\|_U For a linear isomorphism L:U\rightarrow V where V is a normed vector space

Examples