Difference between revisions of "Measure"

From Maths
Jump to: navigation, search
m (Contrast with pre-measure)
m (Definition)
Line 3: Line 3:
  
 
==Definition==
 
==Definition==
A [[Sigma-ring|{{sigma|ring}}]] {{M|\mathcal{A} }} and a countably [[Additive function|additive]], [[Extended real value|extended real valued]]. non-negative [[Set function|set]] [[Function|function]] <math>\mu:\mathcal{A}\rightarrow[0,\infty]</math> is a measure.  
+
A [[Sigma-ring|{{sigma|ring}}]] {{M|\mathcal{A} }} and a countably [[Additive function|additive]], [[Extended real value|extended real valued]]. non-negative [[Set function|set]] [[Function|function]] <math>\mu:\mathcal{A}\rightarrow[0,\infty]</math> is a measure. That is:
 +
* {{M|1=\mu(\emptyset)=0}}
 +
* <math>\mu\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu(A_n)</math>
 +
* <math>\mu(S)\ge 0\ \forall S\in\mathcal{A}</math>
  
 
===Contrast with pre-measure===
 
===Contrast with pre-measure===

Revision as of 22:59, 2 May 2015

\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }Not to be confused with Pre-measure


Definition

A \sigma-ring \mathcal{A} and a countably additive, extended real valued. non-negative set function \mu:\mathcal{A}\rightarrow[0,\infty] is a measure. That is:

  • \mu(\emptyset)=0
  • \mu\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu(A_n)
  • \mu(S)\ge 0\ \forall S\in\mathcal{A}

Contrast with pre-measure

Note: the family A_n must be pairwise disjoint

Property Measure Pre-measure
\mu:\mathcal{A}\rightarrow[0,\infty] \mu_0:R\rightarrow[0,\infty]
\mu(\emptyset)=0 \mu_0(\emptyset)=0
Finitely additive \mu\left(\bigudot^n_{i=1}A_i\right)=\sum^n_{i=1}\mu(A_i) \mu_0\left(\bigudot^n_{i=1}A_i\right)=\sum^n_{i=1}\mu_0(A_i)
Countably additive \mu\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu(A_n) If \bigudot^\infty_{n=1}A_n\in R then \mu_0\left(\bigudot^\infty_{n=1}A_n\right)=\sum^\infty_{n=1}\mu_0(A_n)

Terminology

These terms apply to pre-measures to, rather \mathcal{A} you would use the ring the pre-measure is defined on.

Complete measure

A measure is complete if for A\in\mathcal{A} we have [\mu(A)=0\wedge B\subset A]\implies B\in \mathcal{A}

Finite

A set A\in\mathcal{A} is finite if \mu(A)<\infty - we say "A has finite measure"

Finite measure

\mu is a finite measure if every set \in\mathcal{A} is finite.

Sigma-finite

A set A\in\mathcal{A} is \sigma-finite if \exists(A_n)_{n=1}^\infty:[A\subseteq\cup^\infty_{n=1}A_n\wedge(\forall A_n,\ \mu(A_n)<\infty)]

Sigma-finite measure

\mu is \sigma-finite if every set \in\mathcal{A} is \sigma-finite

Total

If \mathcal{A} is a \sigma-algebra rather than a ring (that is X\in\mathcal{A} where X is the space) then we use

Totally finite measure

If X is finite

Totally sigma-finite measure

If X is \sigma-finite

Examples

Trivial measures

Given the Measurable space (X,\mathcal{A}) we can define:

\mu:\mathcal{A}\rightarrow\{0,+\infty\} by \mu(A)=\left\{\begin{array}{lr} 0 & \text{if }A=\emptyset \\ +\infty & \text{otherwise} \end{array}\right.

Another trivial measure is:

v:\mathcal{A}\rightarrow\{0\} by v(A)=0 for all A\in\mathcal{A}

See also