Poisson distribution

From Maths
Revision as of 15:19, 22 November 2017 by Alec (Talk | contribs)

Jump to: navigation, search
Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
My informal derivation feels too formal, but isn't formal enough to be a formal one! Work in progress!
Poisson distribution
XPoi(λ)
λR0
(λ - the average rate of events per unit)
file.png
Definition
Type Discrete, over N0
p.m.f P[X=k]:=eλλkk!
c.d.f P[Xk]=eλki=0λik!
Characteristics
Expected value E[X]=λ
Variance Var(X)=λ

Definition

  • XPoisson(λ)
    • for kN0 we have: P[X=k]:=eλλkk!
      • the first 2 terms are easy to give: e^{\lambda} and \lambda e^{-\lambda} respectively, after that we have \frac{1}{2}\lambda^2 e^{-\lambda} and so forth
    • for k\in\mathbb{N}_{\ge 0} we have: \mathbb{P}[X\le k]\eq e^{-\lambda}\sum^k_{j\eq 0}\frac{1}{j!}\lambda^j

As a formal random variable

\xymatrix{ & [0,1] \ar[r]^X & \mathbb{N}_0 \\ & \mathcal{B}([0,1]) \ar[dl]_-{\lambda} & \mathcal{P}(\mathbb{N}_0) \ar[l]_-{X^{-1} } \ar@{-->}@/^1em/[dll]^-{\mathbb{P}:\eq \lambda\circ X^{-1} } \\ \mathbb{R} & & }
Situation for our RV
Caveat:\lambda here is used to denote 2 things - the parameter to the Poisson distribution, and the restriction of the 1 dimensional Lebesgue measure to some region of interest.

There is no unique way to define a random variable, here is one way.

  • Let \big([0,1],\ \mathcal{B}([0,1]),\ \lambda\big) be a probability space - which itself could be viewed as a rectangular distribution's random variable
    • Let \lambda\in\mathbb{R}_{>0} be given, and let X\sim\text{Poi}(\lambda)
      • Specifically consider \big(\mathbb{N}_0,\ \mathcal{P}(\mathbb{N}_0)\big) as a sigma-algebra and X:[0,1]\rightarrow\mathbb{N}_0 by:
        • X:x\mapsto\left\{\begin{array}{lr}0&\text{if }x\in[0,p_1)\\1 & \text{if }x\in[p_1,p_2)\\ \vdots & \vdots \\ k & \text{if }x\in[p_k,p_{k+1})\\ \vdots & \vdots \end{array}\right. for p_1:\eq e^{-\lambda} \frac{\lambda^1}{1!} and p_k:\eq p_{k-1}+e^{-\lambda}\frac{\lambda^k}{k!}

Giving the setup shown on the left.

To add to page

Mean

  • \sum^\infty_{n\eq 0} n\times\mathbb{P}[X\eq n]\eq\sum^\infty_{n\eq 0}\left[ n\times e^{-\lambda}\frac{\lambda^n}{n!}\right]\eq0+\left[ e^{-\lambda}\sum^\infty_{n\eq 1} \frac{\lambda^n}{(n-1)!}\right] \eq e^{-\lambda}\lambda\left[\sum^\infty_{n\eq 1}\frac{\lambda^{n-1} }{(n-1)!}\right]
    \eq \lambda e^{-\lambda}\left[\sum^{\infty}_{n\eq 0}\frac{\lambda^n}{n!}\right]\eq \lambda e^{-\lambda}\left[\lim_{n\rightarrow\infty}\left(\sum^{n}_{k\eq 0}\frac{\lambda^k}{k!}\right)\right]
    • But! e^x\eq\lim_{n\rightarrow\infty}\left(\sum^n_{i\eq 0}\frac{x^i}{i!}\right)
    • So \eq\lambda e^{-\lambda} e^\lambda
      • \eq\lambda

Derivation

Standard Poisson distribution:

  • Let S:\eq[0,1)\subseteq\mathbb{R} , recall that means S\eq\{x\in\mathbb{R}\ \vert\ 0\le x<1\}
  • Let \lambda be the average count of some event that can occur 0 or more times on S

We will now divide S up into N equally sized chunks, for N\in\mathbb{N}_{\ge 1}

  • Let S_{i,N}:\eq\left[\frac{i-1}{N},\frac{i}{N}\right)[Note 1] for i\in\{1,\ldots,N\}\subseteq\mathbb{N}

We will now define a random variable that counts the occurrences of events per interval.

  • Let C\big(S_{i,N}\big) be the RV such that its value is the number of times the event occurred in the \left[\frac{i-1}{N},\frac{i}{N}\right) interval

We now require:

  • \lim_{N\rightarrow\infty}\left(\mathbb{P}[C\big(S_{i,N}\big)\ge 2]\right)\eq 0 - such that:
    • as the S_{i,N} get smaller the chance of 2 or more events occurring in the space reaches zero.
    • Warning:This is phrased as a limit, I'm not sure it should be as we don't have any S_{i,\infty} so no \text{BORV}(\frac{\lambda}{N}) distribution then either

Note that:

  • \lim_{N\rightarrow\infty}\big(C(S_{i,N})\big)\eq\lim_{N\rightarrow\infty}\left(\text{BORV}\left(\frac{\lambda}{N}\right)\right)
    • This is supposed to convey that the distribution of C(S_{i,N}) as N gets large gets arbitrarily close to \text{BORV}(\frac{\lambda}{N})

So we may say for sufficiently large N that:

  • C(S_{i,N})\mathop{\sim}_{\text{(approx)} } \text{BORV}(\frac{\lambda}{N}), so that:
    • \mathbb{P}[C(S_{i,N})\eq 0]\approx(1-\frac{\lambda}{N})
    • \mathbb{P}[C(S_{i,N})\eq 1]\approx \frac{\lambda}{N} , and of course
    • \mathbb{P}[C(S_{i,N})\ge 2]\approx 0

Assuming the C(S_{i,N}) are independent over i (which surely we get from the \text{BORV} distributions?) we see:

  • C(S)\mathop{\sim}_{\text{(approx)} } \text{Bin} \left(N,\frac{\lambda}{N}\right) or, more specifically: C(S)\eq\lim_{N\rightarrow\infty}\Big(\sum^N_{i\eq 1}C(S_{i,N})\Big)\eq\lim_{N\rightarrow\infty}\left(\text{Bin}\left(N,\frac{\lambda}{N}\right)\right)


We see:

  • \mathbb{P}[C(S)\eq k]\eq\lim_{N\rightarrow\infty} \Big(\mathbb{P}\big[\text{Bin}(N,\frac{\lambda}{N})\eq k\big]\Big)\eq\lim_{N\rightarrow\infty}\left({}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k\left(1-\frac{\lambda}{N}\right)^{N-k}\right)

We claim that:

  • \lim_{N\rightarrow\infty}\left({}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k\left(1-\frac{\lambda}{N}\right)^{N-k}\right)\eq \frac{\lambda^k}{k!}e^{-\lambda}

We will tackle this in two parts:

  • \lim_{N\rightarrow\infty}\Bigg(\underbrace{ {}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k}_{A}\ \underbrace{\left(1-\frac{\lambda}{N}\right)^{N-k} }_{B}\Bigg) where B\rightarrow e^{-\lambda} and A\rightarrow \frac{\lambda^k}{k!}

Proof

Key notes:

A

Notice:

  • {}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k \eq \frac{N!}{(N-k)!k!}\cdot\frac{1}{N^k}\cdot\lambda^k
    \eq\frac{1}{k!}\cdot\frac{\overbrace{N(N-1)\cdots(N-k+2)(N-k+1)}^{k\text{ terms} } }{\underbrace{N\cdot N\cdots N}_{k\text{ times} } } \cdot\lambda^k
    • Notice that as N gets bigger N-k+1 is "basically" N so the Ns in the denominator cancel (in fact the value will be slightly less than 1, tending towards 1 as N\rightarrow\infty) this giving:
      • \frac{\lambda^k}{k!}

B

This comes from:

  • e^x:\eq\lim_{n\rightarrow\infty}\left(\left(1+\frac{x}{n}\right)^n\right), so we get the e^{-\lambda} term.

Notes

  1. Jump up Recall again that means \{x\in\mathbb{R}\ \vert\ \frac{i-1}{N}\le x < \frac{i}{N} \}