Notes:Distribution of the sample median

From Maths
Revision as of 07:30, 11 December 2017 by Alec (Talk | contribs) (Saving work)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
\newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }
\newcommand{\E}[1]{ {\mathbb{E}{\left[{#1}\right]} } } \newcommand{\Mdm}[1]{\text{Mdm}{\left({#1}\right) } } \newcommand{\Var}[1]{\text{Var}{\left({#1}\right) } } \newcommand{\ncr}[2]{ \vphantom{C}^{#1}\!C_{#2} }

Problem overview

Let X_1,\ldots,X_{2m+1} be a sample from a population X, meaning that the X_i are i.i.d random variables, for some m\in\mathbb{N}_{0} . We wish to find:

  • \P{\text{Median}(X_1,\ldots,X_{2m+1})\le r} - the Template:Cdf of the median.

Initial work

Since the variables are independent then any ordering is as likely as any other (which I proved the long way, rather than just jumping to \frac{1}{(2m+1)!} - silly me) however the result, found in Probability of i.i.d random variables being in an order and not greater than something will be useful.