Semi-ring of half-closed-half-open intervals
\newcommand{\[}{[\![}\newcommand{\]}{]\!]}\newcommand{\(}{(\!(}\newcommand{\)}{)\!)}
Definition
Let a:= ({ a_i })_{ i = 1 }^{ n }\subseteq \mathbb{R} [Note 1][Note 2] and b:= ({ b_i })_{ i = 1 }^{ n }\subseteq \mathbb{R} be two finite sequences of the same length (namely n\in\mathbb{N} ), we define \[a,b\), a half-open-half-closed rectangle in \mathbb{R}^n[1] as follows:
- \[a,b\):=[a_1,b_1)\times\cdots\times[a_n,b_n)\subset\mathbb{R}^n where [\alpha,\beta):=\{x\in\mathbb{R}\ \vert\ \alpha\le x < \beta\}[Convention 1]
We denote the collection of all such half-open-half-closed rectangles by \mathscr{J}^n[1], \mathscr{J}(\mathbb{R}^n)[1] or, provided the context makes the dimensions obvious, simply just \mathscr{J} [1]. Formally:
- \mathscr{J}^n:=\{\[a,b\)\ \vert\ a,b\in\mathbb{R}^n\}
Furthermore, we claim \mathscr{J}^n is a semi-ring of sets
Proof of claims
Recall the definition of a semi-ring of sets
In order to prove this we will first show that \mathscr{J}^1 (the collection of half-open-half-closed intervals of the form [a,b)\subset\mathbb{R} ) is a semi-ring. Then we shall use induction on n to show it for all \mathscr{J}^n
The message provided is:
Conventions
- Jump up ↑ For intervals in general we define the following:
- If \alpha\ge\beta then [\alpha,\beta)=\emptyset
- If \{X_\alpha\}_{\alpha\in I} is an arbitrary collection of sets where one or more of the X_\alpha are the empty set, \emptyset, then:
- \prod_{\alpha\in I}X_\alpha=\emptyset (here \prod denotes the Cartesian product)
Notes
- Jump up ↑ Or equivalently, a\in\mathbb{R}^n, either way we get an n-tuple of real numbers
- Jump up ↑ The symbol \subset could be used instead of \subseteq but it doesn't matter, as:
- \big[A\subset B\big]\implies\big[A\subseteq B\big]
- Jump up ↑ An F is a bit like an R with an unfinished loop and the foot at the right. "Semi Ring".
- Jump up ↑ Usually the finite sequence ({ S_i })_{ i = m }^{ \infty }\subseteq \mathcal{F} being pairwise disjoint is implied by the \bigudot however here I have been explicit. To be more explicit we could say:
- \forall S,T\in\mathcal{F}\exists(S_i)_{i=1}^m\subseteq\mathcal{F}\left[\underbrace{\big(\forall i,j\in\{1,\ldots,m\}\subset\mathbb{N}[i\ne j\implies S_i\cap S_j=\emptyset]\big)}_{\text{the }S_i\text{ are pairwise disjoint} }\overbrace{\wedge}^\text{and}\left(S-T=\bigcup_{i=1}^m S_i\right)\right]
- Caution:The statement: \forall S,T\in\mathcal{F}\exists(S_i)_{i=1}^m\subseteq\mathcal{F}\left[\big(\forall i,j\in\{1,\ldots,m\}\subset\mathbb{N}[i\ne j\implies S_i\cap S_j=\emptyset]\big)\implies\left(S-T=\bigcup_{i=1}^m S_i\right)\right] is entirely different
- In this statement we are only declaring that a finite sequence exists, and if it is NOT pairwise disjoint, then we may or may not have S-T=\bigcup_{i=1}^mS_i. We require that they be pairwise disjoint AND their union be the set difference of S and T.
- Caution:The statement: \forall S,T\in\mathcal{F}\exists(S_i)_{i=1}^m\subseteq\mathcal{F}\left[\big(\forall i,j\in\{1,\ldots,m\}\subset\mathbb{N}[i\ne j\implies S_i\cap S_j=\emptyset]\big)\implies\left(S-T=\bigcup_{i=1}^m S_i\right)\right] is entirely different
- \forall S,T\in\mathcal{F}\exists(S_i)_{i=1}^m\subseteq\mathcal{F}\left[\underbrace{\big(\forall i,j\in\{1,\ldots,m\}\subset\mathbb{N}[i\ne j\implies S_i\cap S_j=\emptyset]\big)}_{\text{the }S_i\text{ are pairwise disjoint} }\overbrace{\wedge}^\text{and}\left(S-T=\bigcup_{i=1}^m S_i\right)\right]
References
|