Quotient topology
From Maths
Quotient map
Let (X,J) and (Y,K) be topological spaces and let p:X→Y be a surjective map.
p is a quotient map[1] if we have U∈K⟺p−1(U)∈J
Notes
Stronger than continuity
If we had K={∅,Y} then p is automatically continuous (as it is surjective), the point is that K is the largest topology we can define on Y such that p is continuous
See Motivation for quotient topology for a discussion on where this goes.
Definition
If (X,J) is a topological space, A is a set, and p:(X,J)→A is a surjective map then there exists exactly one topology JQ relative to which p is a quotient map. This is the quotient topology induced by p
TODO: Munkres page 138
References
- Jump up ↑ Topology - Second Edition - James R Munkres