Smooth map
From Maths
\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} } Note: not to be confused with smooth function
Definition
A map f:M\rightarrow N between two smooth manifolds (M,\mathcal{A}) and (N,\mathcal{B}) (of not necessarily the same dimension) is said to be smooth[1] if:
- \forall p\in M\exists\ (U,\varphi)\in\mathcal{A},\ p\in U\text{ and }(V,\psi)\in\mathcal{B} such that F(U)\subseteq V\wedge[\psi\circ F\circ\varphi^{-1}:\varphi(U)\rightarrow\psi(V)] is smooth
Via commutative diagrams
A map is smooth if the following diagram commutes:
\begin{CD} M @> F > > N\\ @V \varphi V V @V V\psi V\\ \varphi(U) @> G >=\psi\circ F\circ\varphi^{-1} > \psi(V) \end{CD}
Where:
- G is smooth
- (given by G=\psi\circ\varphi^{-1}:\varphi(U)\rightarrow\psi(V))
- M,N are smooth manifolds (with smooth structures) \mathcal{A},\mathcal{B} respectively
- (U,\varphi)\in\mathcal{A}
- (V,\psi)\in\mathcal{B}
See also
References
- Jump up ↑ Introduction to smooth manifolds - John M Lee - Second Edition