Poisson distribution
From Maths
Revision as of 01:31, 3 September 2017 by Alec (Talk | contribs) (Created page with "{{Stub page|grade=A*|msg=My informal derivation feels too formal, but isn't formal enough to be a formal one! Work in progress!}} ==Derivation== Standard Poisson distribution:...")
Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
My informal derivation feels too formal, but isn't formal enough to be a formal one! Work in progress!
Derivation
Standard Poisson distribution:
- Let S:=[0,1)⊆R, recall that means S={x∈R | 0≤x<1}
- Let λ be the average count of some event that can occur 0 or more times on S
We will now divide S up into N equally sized chunks, for N∈N≥1
- Let Si,N:=[i−1N,iN)[Note 1] for i∈{1,…,N}⊆N
We will now define a random variable that counts the occurrences of events per interval.
- Let C(Si,N) be the RV such that its value is the number of times the event occurred in the [i−1N,iN) interval
We now require:
- lim - such that:
- as the S_{i,N} get smaller the chance of 2 or more events occurring in the space reaches zero.
- Warning:This is phrased as a limit, I'm not sure it should be as we don't have any S_{i,\infty} so no \text{BORV}(\frac{\lambda}{N}) distribution then either
Note that:
- \lim_{N\rightarrow\infty}\big(C(S_{i,N})\big)\eq\lim_{N\rightarrow\infty}\left(\text{BORV}\left(\frac{\lambda}{N}\right)\right)
- This is supposed to convey that the distribution of C(S_{i,N}) as N gets large gets arbitrarily close to \text{BORV}(\frac{\lambda}{N})
So we may say for sufficiently large N that:
- C(S_{i,N})\mathop{\sim}_{\text{(approx)} } \text{BORV}(\frac{\lambda}{N}), so that:
- \mathbb{P}[C(S_{i,N})\eq 0]\approx(1-\frac{\lambda}{N})
- \mathbb{P}[C(S_{i,N})\eq 1]\approx \frac{\lambda}{N} , and of course
- \mathbb{P}[C(S_{i,N})\ge 2]\approx 0
Assuming the C(S_{i,N}) are independent over i (which surely we get from the \text{BORV} distributions?) we see:
- C(S)\mathop{\sim}_{\text{(approx)} } \text{Bin} \left(N,\frac{\lambda}{N}\right) or, more specifically: C(S)\eq\lim_{N\rightarrow\infty}\Big(\sum^N_{i\eq 1}C(S_{i,N})\Big)\eq\lim_{N\rightarrow\infty}\left(\text{Bin}\left(N,\frac{\lambda}{N}\right)\right)
We see:
- \mathbb{P}[C(S)\eq k]\eq\lim_{N\rightarrow\infty} \Big(\mathbb{P}\big[\text{Bin}(N,\frac{\lambda}{N})\eq k\big]\Big)\eq\lim_{N\rightarrow\infty}\left({}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k\left(1-\frac{\lambda}{N}\right)^{N-k}\right)
We claim that:
- \lim_{N\rightarrow\infty}\left({}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k\left(1-\frac{\lambda}{N}\right)^{N-k}\right)\eq \frac{\lambda^k}{k!}e^{-\lambda}
We will tackle this in two parts:
- \lim_{N\rightarrow\infty}\Bigg(\underbrace{ {}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k}_{A}\ \underbrace{\left(1-\frac{\lambda}{N}\right)^{N-k} }_{B}\Bigg) where B\rightarrow e^{-\lambda} and A\rightarrow \frac{\lambda^k}{k!}
Proof
Key notes:
A
Notice:
- {}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k \eq \frac{N!}{(N-k)!k!}\cdot\frac{1}{N^k}\cdot\lambda^k
- \eq\frac{1}{k!}\cdot\frac{\overbrace{N(N-1)\cdots(N-k+2)(N-k+1)}^{k\text{ terms} } }{\underbrace{N\cdot N\cdots N}_{k\text{ times} } } \cdot\lambda^k
- Notice that as N gets bigger N-k+1 is "basically" N so the Ns in the denominator cancel (in fact the value will be slightly less than 1, tending towards 1 as N\rightarrow\infty) this giving:
- \frac{\lambda^k}{k!}
B
This comes from:
- e^x:\eq\lim_{n\rightarrow\infty}\left(\left(1+\frac{x}{n}\right)^n\right), so we get the e^{-\lambda} term.
Notes
- Jump up ↑ Recall again that means \{x\in\mathbb{R}\ \vert\ \frac{i-1}{N}\le x < \frac{i}{N} \}