Poisson distribution

From Maths
Revision as of 01:31, 3 September 2017 by Alec (Talk | contribs) (Created page with "{{Stub page|grade=A*|msg=My informal derivation feels too formal, but isn't formal enough to be a formal one! Work in progress!}} ==Derivation== Standard Poisson distribution:...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
My informal derivation feels too formal, but isn't formal enough to be a formal one! Work in progress!

Derivation

Standard Poisson distribution:

  • Let S:=[0,1)R, recall that means S={xR | 0x<1}
  • Let λ be the average count of some event that can occur 0 or more times on S

We will now divide S up into N equally sized chunks, for NN1

  • Let Si,N:=[i1N,iN)[Note 1] for i{1,,N}N

We will now define a random variable that counts the occurrences of events per interval.

  • Let C(Si,N) be the RV such that its value is the number of times the event occurred in the [i1N,iN) interval

We now require:

  • lim - such that:
    • as the S_{i,N} get smaller the chance of 2 or more events occurring in the space reaches zero.
    • Warning:This is phrased as a limit, I'm not sure it should be as we don't have any S_{i,\infty} so no \text{BORV}(\frac{\lambda}{N}) distribution then either

Note that:

  • \lim_{N\rightarrow\infty}\big(C(S_{i,N})\big)\eq\lim_{N\rightarrow\infty}\left(\text{BORV}\left(\frac{\lambda}{N}\right)\right)
    • This is supposed to convey that the distribution of C(S_{i,N}) as N gets large gets arbitrarily close to \text{BORV}(\frac{\lambda}{N})

So we may say for sufficiently large N that:

  • C(S_{i,N})\mathop{\sim}_{\text{(approx)} } \text{BORV}(\frac{\lambda}{N}), so that:
    • \mathbb{P}[C(S_{i,N})\eq 0]\approx(1-\frac{\lambda}{N})
    • \mathbb{P}[C(S_{i,N})\eq 1]\approx \frac{\lambda}{N} , and of course
    • \mathbb{P}[C(S_{i,N})\ge 2]\approx 0

Assuming the C(S_{i,N}) are independent over i (which surely we get from the \text{BORV} distributions?) we see:

  • C(S)\mathop{\sim}_{\text{(approx)} } \text{Bin} \left(N,\frac{\lambda}{N}\right) or, more specifically: C(S)\eq\lim_{N\rightarrow\infty}\Big(\sum^N_{i\eq 1}C(S_{i,N})\Big)\eq\lim_{N\rightarrow\infty}\left(\text{Bin}\left(N,\frac{\lambda}{N}\right)\right)


We see:

  • \mathbb{P}[C(S)\eq k]\eq\lim_{N\rightarrow\infty} \Big(\mathbb{P}\big[\text{Bin}(N,\frac{\lambda}{N})\eq k\big]\Big)\eq\lim_{N\rightarrow\infty}\left({}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k\left(1-\frac{\lambda}{N}\right)^{N-k}\right)

We claim that:

  • \lim_{N\rightarrow\infty}\left({}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k\left(1-\frac{\lambda}{N}\right)^{N-k}\right)\eq \frac{\lambda^k}{k!}e^{-\lambda}

We will tackle this in two parts:

  • \lim_{N\rightarrow\infty}\Bigg(\underbrace{ {}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k}_{A}\ \underbrace{\left(1-\frac{\lambda}{N}\right)^{N-k} }_{B}\Bigg) where B\rightarrow e^{-\lambda} and A\rightarrow \frac{\lambda^k}{k!}

Proof

Key notes:

A

Notice:

  • {}^N\!C_k\ \left(\frac{\lambda}{N}\right)^k \eq \frac{N!}{(N-k)!k!}\cdot\frac{1}{N^k}\cdot\lambda^k
    \eq\frac{1}{k!}\cdot\frac{\overbrace{N(N-1)\cdots(N-k+2)(N-k+1)}^{k\text{ terms} } }{\underbrace{N\cdot N\cdots N}_{k\text{ times} } } \cdot\lambda^k
    • Notice that as N gets bigger N-k+1 is "basically" N so the Ns in the denominator cancel (in fact the value will be slightly less than 1, tending towards 1 as N\rightarrow\infty) this giving:
      • \frac{\lambda^k}{k!}

B

This comes from:

  • e^x:\eq\lim_{n\rightarrow\infty}\left(\left(1+\frac{x}{n}\right)^n\right), so we get the e^{-\lambda} term.

Notes

  1. Jump up Recall again that means \{x\in\mathbb{R}\ \vert\ \frac{i-1}{N}\le x < \frac{i}{N} \}