Mdm of the Poisson distribution

From Maths
Revision as of 12:21, 6 November 2017 by Alec (Talk | contribs) (Saving work)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
\newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }

TODO: Link with Poisson distribution page


Statement

Let X~\text{Poi} (\lambda) for some \lambda\in\mathbb{R}_{>0} . X may take any value in \mathbb{N}_0

Recall the Mdm is defined as:

  • \text{Mdm}(X):\eq\mathbb{E}\Big[\ \big\vert X-\mathbb{E}[X]\big\vert\ \Big]

I kept messing up on paper, so I write the calculations here

Macros follow this (if any non standard) \newcommand{\LHS}[0]{ {\text{Mdm}(X)} }

Calculation

  • \text{Mdm}(X):\eq\mathbb{E}\Big[\ \big\vert X-\mathbb{E}[X]\big\vert\ \Big]:\eq\sum^\infty_{k\eq 0}\big\vert X-\mathbb{E}[X]\big\vert\cdot\P{X\eq k}
    \eq e^{-\lambda}\ \sum^\infty_{k\eq 0}\frac{\lambda^k}{k!}\big\vert k-\mathbb{E}[X]\big\vert \eq e^{-\lambda}\ \sum^\infty_{k\eq 0}\frac{\lambda^k}{k!}\big\vert k-\lambda\big\vert
    • Note that:
      1. if k\ge \lambda\ \implies\ k-\lambda\ge 0\ \implies\ \vert k-\lambda\vert \eq k-\lambda
      2. if k\le \lambda\ \implies\ k-\lambda\le 0\ \implies \lambda-k\ge 0\ \implies \vert k-\lambda\vert \eq \lambda-k
    • Define the following two values:
      1. u:\eq\text{RoundDownToInt}(\lambda)[Note 1] and
      2. v:\eq u+1[Note 2]
      • This means we have u\le \lambda and v\ge \lambda, specifically, we have the following two cases:
        1. if k\le u and as u\le \lambda we see k\le \lambda and
        2. if k> u then k \ge u+1\eq v \ge\lambda so k\ge \lambda
    • Now, from above: \LHS{}\eq e^{-\lambda}\ \sum^\infty_{k\eq 0}\frac{\lambda^k}{k!}\big\vert k-\lambda\big\vert
      \eq e^{-\lambda}{\left[\frac{\lambda^0}{0!}\big\vert 0-\lambda\vert \ +\ \sum^\infty_{k\eq 1}\frac{\lambda^k}{k!}\big\vert k-\lambda\big\vert\right]}
      \eq e^{-\lambda}{\left[\lambda\ +\ \sum^u_{k\eq 1}\frac{\lambda^k}{k!}\big\vert k-\lambda\big\vert\ +\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\big\vert k-\lambda\big\vert \right]} with the understanding that if u\eq 0 that the sum from k\eq 1 to u evaluates to 0, obviously
    • Notice now that:
      1. For the first sum, where 1\le k\le u (specifically that k\le u) we have k\le \lambda
        • and that from further above we noticed if k\le \lambda then \big\vert k-\lambda\big\vert \eq \lambda-k
      2. For the second sum, where k > u that this meant k\ge \lambda
        • and that from further above we noticed if k\ge\lambda then \big\vert k-\lambda\big\vert\eq k-\lambda, so
    • \LHS{}\eq e^{-\lambda}{\left[\lambda\ +\ \sum^u_{k\eq 1}\frac{\lambda^k}{k!}\big\vert k-\lambda\big\vert\ +\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\big\vert k-\lambda\big\vert \right]}
      \eq e^{-\lambda}{\left[\lambda\ +\ \sum^u_{k\eq 1}\frac{\lambda^k}{k!}(\lambda-k)\ +\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}( k-\lambda)\right]}
      • we now expand these sums:
      \eq e^{-\lambda}{\Bigg[\lambda\ +\ \overbrace{\sum^u_{k\eq 1}\frac{\lambda^{k+1} }{k!}\ -\ \sum^u_{k\eq 1}\frac{k\lambda^k}{k!} }^\text{first sum}\ +\ \overbrace{\sum^\infty_{k\eq v}\frac{k\lambda^k}{k!}-\sum^\infty_{k\eq v}\frac{\lambda^{k+1} }{k!} }^\text{second sum}\ \Bigg]}
      \eq e^{-\lambda}{\left[\lambda\ +\ \lambda{\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ {\left( \sum^\infty_{k\eq v}\frac{\lambda^k}{(k-1)!}\ -\ \sum^u_{k\eq 1}\frac{\lambda^k}{(k-1)!}\right)}\right]} , by grouping the terms and factorising where we can
      \eq e^{-\lambda}{\left[\lambda\ +\ \lambda{\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ {\left( \sum^\infty_{k\eq v-1}\frac{\lambda^{k+1} }{k!}\ -\ \sum^{u-1}_{k\eq 0}\frac{\lambda^{k+1} }{k!}\right)}\right]} [Note 3] by reindexing the latter two sums
      \eq e^{-\lambda}{\left[\lambda\ +\ \lambda{\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ \lambda{\left( \sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!}\ -\ \sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!}\right)}\right]}
      \eq \lambda e^{-\lambda}{\left[1\ +\ {\left(\sum^u_{k\eq 1}\frac{\lambda^k}{k!}\ -\ \sum^\infty_{k\eq v}\frac{\lambda^k}{k!}\right)}\ +\ {\left( \sum^\infty_{k\eq v-1}\frac{\lambda^{k} }{k!}\ -\ \sum^{u-1}_{k\eq 0}\frac{\lambda^{k} }{k!}\right)}\right]}



TODO: Keep going, there's some heavy cancelling out about to happen! DON'T FORGET TO REMOVE DIV AROUND NOTES SO THEY'RE NORMAL SIZE!


Notes

  1. Jump up Recall \lambda>0, this means u\ge 0 and thus u\in\mathbb{N}_0
  2. Jump up Notice:
    • If \lambda is not \in\mathbb{N}_{\ge 0} then u+1\eq\text{RoundUpToInt}(\lambda), so u+1\eq v\ge \lambda
    • If \lambda is in \mathbb{N}_{\ge 0} then u\eq\lambda and v\eq u+1> u\eq \lambda so v > \lambda
      • Notice \big(v > \lambda\big)\implies\big(v\ge \lambda\big)
    So either way, v\ge \lambda
  3. Jump up Note that the third sum should have "\infty-1" as its upper index, however remember that when a sum is to \infty this is actually a limit, it was in this case:
    • \lim_{n\rightarrow\infty}\left(\sum^n_{k\eq v}\cdots\right)
    and became
    • \lim_{n\rightarrow\infty}\left(\sum^{n-1}_{k\eq v-1}\cdots\right)