The sum of two random variables with Poisson distributions is a Poisson distribution itself
From Maths
(Redirected from Addition of Poisson distributions)
Grade: C
This page requires some work to be carried out
\newcommand{\P}[2][]{\mathbb{P}#1{\left[{#2}\right]} } \newcommand{\Pcond}[3][]{\mathbb{P}#1{\left[{#2}\!\ \middle\vert\!\ {#3}\right]} } \newcommand{\Plcond}[3][]{\Pcond[#1]{#2}{#3} } \newcommand{\Prcond}[3][]{\Pcond[#1]{#2}{#3} }
Contents
[hide]Statement
Let \lambda,r\in\mathbb{R}_{>0} be given. We start with the following two random variables
- X\sim\text{Poi}(\lambda) and
- Y\sim\text{Poi}(r)
(And that these are statistically independent random variables
Then:
- Let Z:\eq X+Y
We claim
- X+Y\eq: Z\sim\text{Poi}(\lambda+r)
Proof
Let Z'\sim\text{Poi}(\lambda+r)
We will show that \forall k\in\mathbb{N}_0\big[\P{Z\eq k}\eq\P{Z'\eq k}\big]
- Let k\in\mathbb{N}_0 be given, then:
- \P{Z\eq k}:\eq\P{X+Y\eq k}\eq\sum^k_{i\eq 0}\overbrace{\P{X\eq i}\Pcond{Y\eq k-i}{X\eq i} }^{\eq\P{(X\eq i)\cap(Y\eq k-i)} } [Note 1]
- \eq\sum^k_{i\eq 0}\P{X\eq i}\P{Y\eq k-i} - as X and Y are independent random variables[Note 2]
- \eq\sum^k_{i\eq 0}e^{-\lambda}\frac{\lambda^i}{i!}\cdot e^{-r}\frac{r^{k-i} }{(k-i)!} - by definition of the Poisson distribution
- \eq e^{-(\lambda+r)}\sum^k_{i\eq 0}\lambda^i r^{k-i} \frac{1}{i!(k-i)!}
- Recall that {}^nC_r:\eq \frac{n!}{r!(k-r)!}
- So \frac{ {}^kC_i}{k!}\eq\frac{1}{i!(k-i)!} (by dividing by n! in the definition on the line above)
- Thus: \P{Z\eq k}\eq e^{-(\lambda+r)}\sum^k_{i\eq 0} \lambda^i r^{k-i} \frac{ {}^kC_i }{k!}
- \eq e^{-(\lambda+r)}\cdot\frac{1}{k!}\cdot\ \underbrace{\left(\sum^k_{i\eq 0} {}^kC_i\ \lambda_i r^{k-i} \right)}_{\eq(\lambda+r)^k} - but note the sum is now just the binomial expansion of (\lambda+r)^k
- Resulting in:
- \P{Z\eq k}\eq e^{-(\lambda+r)} \frac{(\lambda+r)^k}{k!} - which the definition of the probability of a Poisson random variable being equal to k whose rate parameter is \lambda+r, specifically:
- Now notice \P{Z'\eq k}:\eq e^{-(\lambda+r) } \frac{(\lambda+r)^k}{k!}
- Thus we see that \P{Z\eq k}\eq\P{Z'\eq k}
- \P{Z\eq k}:\eq\P{X+Y\eq k}\eq\sum^k_{i\eq 0}\overbrace{\P{X\eq i}\Pcond{Y\eq k-i}{X\eq i} }^{\eq\P{(X\eq i)\cap(Y\eq k-i)} } [Note 1]
- Since we showed this for an arbitrary k\in\mathbb{N}_0 we have shown it for all
This completes the proof
Notes
- Jump up ↑ We could just have well have used
- \P{Y\eq k}\Pcond{X\eq k-i}{Y\eq k} in the sum, or
- \P{Y\eq k-i}\Pcond{X\eq i}{Y\eq k-i}
- Jump up ↑ Specifically that \Pcond{Y\eq k-i}{X\eq i}\eq\P{Y\eq k-i} is used here. Which is fine as these events are independent events
References
Categories:
- Pages requiring work
- Pages requiring work of grade: C
- Theorems
- Theorems, lemmas and corollaries
- Elementary Probability Theorems
- Elementary Probability Theorems, lemmas and corollaries
- Elementary Probability
- Probability Theorems
- Probability Theorems, lemmas and corollaries
- Probability
- Statistics Theorems
- Statistics Theorems, lemmas and corollaries
- Statistics