Continuous map
- Note: there are a few different conditions for continuity, there's also continuity at a point. This diagram is supposed to show how they relate to each other.
|
Note that:
|
Overview | Key |
---|
Contents
[<hidetoc>]/Refactoring tasks
Add the following:
- A map is continuous if and only if the pre-image of every closed set is closed
- A map is continuous if and only if each point in the domain has an open neighbourhood for which the restriction of the map is continuous on
Definition
Given two topological spaces (X,J) and (Y,K) we say that a map, f:X→Y is continuous if[1]:
- ∀O∈K[f−1(O)∈J]
That is to say:
- The pre-image of every set open in Y under f is open in X
Continuous at a point
Again, given two topological spaces (X,J) and (Y,K), and a point x0∈X, we say the map f:X→Y is continuous at x0 if[1]:
- ∀N⊆Y neighbourhood to f(x0)[f−1(N) is a neighbourhood of x0]
Claim 1
Claim: The mapping f is continuous ⟺ it is continuous at every point
Sequentially continuous at a point
Given two topological spaces (X,J) and (Y,K), and a point x0∈X, a function f:X→Y is said to be continuous at x0 if[1]:
- ∀(xn)∞n=1[lim (Recall that (x_n)_{n=1}^\infty denotes a sequence, see Limit (sequence) for information on limits)
Claim 2
Claim: f is continuous at x_0 using the neighbourhood definition \iff it is continuous at x_0 using the sequential definition
References
- ↑ <cite_references_link_many_accessibility_label> 1.0 1.1 1.2 Krzysztof Maurin - Analysis - Part 1: Elements
Old page
First form
The first form:
f:A\rightarrow B is continuous at a if:
\forall\epsilon>0\exists\delta>0:|x-a|<\delta\implies|f(x)-f(a)|<\epsilon (note the implicit \forall x\in A)
Second form
Armed with the knowledge of what a metric space is (the notion of distance), you can extend this to the more general:
f:(A,d)\rightarrow(B,d') is continuous at a if:
\forall\epsilon>0\exists\delta>0:d(x,a)<\delta\implies d'(f(x),f(a))<\epsilon
\forall\epsilon>0\exists\delta>0:x\in B_\delta(a)\implies f(x)\in B_\epsilon(f(a))
In both cases the implicit \forall x is present. Basic type inference (the B_\epsilon(f(a)) is a ball about f(a)\in B thus it is a ball in B using the metric d')
Third form
The most general form, continuity between topologies
f:(A,\mathcal{J})\rightarrow(B,\mathcal{K}) is continuous if
\forall U\in\mathcal{K}\ f^{-1}(U)\in\mathcal{J} - that is the pre-image of all open sets in (A,\mathcal{J}) is open.