Notes:Basis for a topology/New terminology

From Maths
Jump to: navigation, search

Definitions

Here we will use GBasis for a generated topology (by a basis) and TBasis for a basis of an existing topology.

GBasis

Let X be a set and BP(X) be a collection of subsets of X. Then we say:

  • B is a GBasis if it satisfies the following 2 conditions:
    1. xXBB[xB] - every element of X is contained in some GBasis set.
    2. B1,B2Bx B1B2B3B[B1B2(xB3B1B2)][Note 1][Note 2]

Then B induces a topology on X.

Let JInduced denote this topology, then:

  • UP(X)[UJInduced(pUBB[pBBU])]
    • Caution:pUBB[pBBU] is actually just pU(the B that exists)=U really. This is more often seen as "If a GBasis then the collection of all unions is a topology"

TBasis

Suppose (X,J) is a topological space and BP(X) is some collection of subsets of X. We say:

  • B is a TBasis if it satisfies both of the following:
    1. BB[BJ] - all the basis elements are themselves open.
    2. UJ{Bα}αI[αIBα=U]

If we have a TBasis for a topological space then we may talk about its open sets differently:

  • UP(X)[UJ(pUBB[pBBU])] This is called the Basis Criterion

Notes

  1. Jump up Note that xB3B1B2 is short for:
    • xB3B3B1B2
  2. Jump up Note that if B1B2 is empty (they do not intersect) then the logical implication is true regardless of the RHS of the } sign, so we do not care if we have xB3B3B1B2! Pick any xX and aany B3B!