Notes:Parsing

From Maths
Jump to: navigation, search
\newcommand{\first}[1]{\text{First}(#1)}\newcommand{\nullable}[1]{\text{Nullable}(#1)} \newcommand{\follow}[1]{\text{Follow}(#1)}

Algorithms

These algorithms apply to CFGs:

  • \alpha,\beta,\gamma,\ldots denote sequences (possibly empty) of terminals and nonTerminals Caution:Done from memory, still to do, check this
    • EXCEPT: \varepsilon - which means "the empty string"
  • \text{a},\text{b},\text{c} terminal symbols Caution:Check
  • a,b,c terminal or non terminal symbols Caution:Check

\text{Nullable}

Definition of \nullable{\alpha} (a predicate):

  • \nullable{\alpha}\iff[\alpha\dot\implies\varepsilon]

The algorithm for \text{Nullable} is defined by structural induction:

  1. \nullable{\varepsilon}=\text{true}
  2. \nullable{a\text{a} }=\text{false}
  3. \nullable{\alpha\beta}=\nullable{\alpha}\wedge\nullable{\beta}
  4. \nullable{N}=\nullable{\alpha_1}\vee\cdots\vee\nullable{\alpha_n}
    • Where N consists of n productions, N\rightarrow \alpha_1 to N\rightarrow\alpha_n

\text{First}

Definition of \text{First}(\alpha) (a set):

  • c\in\first{\alpha}\iff\exists\beta\ \text{(possibly empty)}[\alpha\dot\implies c\beta]

The algorithm for \text{First} is also defined by structural induction:

  1. \first{\varepsilon} = \emptyset
  2. \first{\text{a} }=\{\text{a}\}
  3. \first{\alpha\beta}=\left\{\begin{array}{lr}\first{\alpha}\cup\first{\beta}&\text{if }\nullable{\alpha}\\ \first{\alpha} & \text{if not }\nullable{\alpha} \end{array}\right.
  4. \first{N}=\first{\alpha_1}\cup\cdots\cup\first{\alpha_n}
    • Where N has n productions, N\rightarrow\alpha_1 to N\rightarrow\alpha_n

\text{Follow}

Definition of \follow{N} (a set (of terminals)):

  • \text{a}\in\follow{\alpha}\iff\exists (a derivation from the start symbol, S, such that S\dot\implies\alpha N\text{a}\beta for \alpha,\beta (possibly empty) sequences of grammar symbols)

Note that unlike the others given this is not a property directly from the argument, but a property based on all productions that use N (directly or not)

Algorithm to come.