Notes:Parsing
From Maths
Contents
[hide]Algorithms
These algorithms apply to CFGs:
- \alpha,\beta,\gamma,\ldots denote sequences (possibly empty) of terminals and nonTerminals Caution:Done from memory, still to do, check this
- EXCEPT: \varepsilon - which means "the empty string"
- \text{a},\text{b},\text{c} terminal symbols Caution:Check
- a,b,c terminal or non terminal symbols Caution:Check
\text{Nullable}
Definition of \nullable{\alpha} (a predicate):
- \nullable{\alpha}\iff[\alpha\dot\implies\varepsilon]
The algorithm for \text{Nullable} is defined by structural induction:
- \nullable{\varepsilon}=\text{true}
- \nullable{a\text{a} }=\text{false}
- \nullable{\alpha\beta}=\nullable{\alpha}\wedge\nullable{\beta}
- \nullable{N}=\nullable{\alpha_1}\vee\cdots\vee\nullable{\alpha_n}
- Where N consists of n productions, N\rightarrow \alpha_1 to N\rightarrow\alpha_n
\text{First}
Definition of \text{First}(\alpha) (a set):
- c\in\first{\alpha}\iff\exists\beta\ \text{(possibly empty)}[\alpha\dot\implies c\beta]
The algorithm for \text{First} is also defined by structural induction:
- \first{\varepsilon} = \emptyset
- \first{\text{a} }=\{\text{a}\}
- \first{\alpha\beta}=\left\{\begin{array}{lr}\first{\alpha}\cup\first{\beta}&\text{if }\nullable{\alpha}\\ \first{\alpha} & \text{if not }\nullable{\alpha} \end{array}\right.
- \first{N}=\first{\alpha_1}\cup\cdots\cup\first{\alpha_n}
- Where N has n productions, N\rightarrow\alpha_1 to N\rightarrow\alpha_n
\text{Follow}
Definition of \follow{N} (a set (of terminals)):
- \text{a}\in\follow{\alpha}\iff\exists (a derivation from the start symbol, S, such that S\dot\implies\alpha N\text{a}\beta for \alpha,\beta (possibly empty) sequences of grammar symbols)
Note that unlike the others given this is not a property directly from the argument, but a property based on all productions that use N (directly or not)
Algorithm to come.