You are looking at the HTML representation of the XML format.
HTML is good for debugging, but is unsuitable for application use.
Specify the format parameter to change the output format.
To see the non HTML representation of the XML format, set format=xml.
See the complete documentation, or
API help for more information.
<?xml version="1.0"?>
<api>
<query-continue>
<allpages gapcontinue="Real_sequence" />
</query-continue>
<query>
<pages>
<page pageid="538" ns="0" title="Real-valued function">
<revisions>
<rev contentformat="text/x-wiki" contentmodel="wikitext" xml:space="preserve">==Definition==
A ''[[function]]'' is said to be ''real-valued'' if the [[co-domain]] is the set of [[real numbers]], {{M|\mathbb{R} }}<ref name="ITSM">Introduction to Smooth Manifolds - Second Edition - John M. Lee - Springer GTM</ref>. That is to say any function ( {{M|f}} ) and any set ( {{M|U}} ) such that:
* {{M|f:U\rightarrow\mathbb{R} }}
==See also==
* [[Extended-real-valued function]]
* [[Extended real value|Extended-real-value]]
* [[Class of smooth real-valued functions on R-n|The class of smooth real-valued functions on {{M|\mathbb{R}^n}}]]
* [[Class of k-differentiable real-valued functions on R-n|The class of {{M|k}}-differentiable real-valued functions on {{M|\mathbb{R}^n}}]]
==References==
<references/>
{{Definition|Measure Theory|Manifolds|Differential Geometry|Functional Analysis}}</rev>
</revisions>
</page>
<page pageid="2026" ns="0" title="Real projective space">
<revisions>
<rev contentformat="text/x-wiki" contentmodel="wikitext" xml:space="preserve">{{Stub page|grade=A*|msg=Would be a great page to have
* Demote to grade C once charts and definition 1 is in place [[User:Alec|Alec]] ([[User talk:Alec|talk]]) 06:21, 18 February 2017 (UTC)}}
__TOC__
==Definition==
Let {{M|n\in\mathbb{N}_{\ge 1} }} be given. There are 2 common definitions for {{M|\mathbb{RP}^n}} that we encounter. We will use definition 1 unless otherwise noted throughout the unified mathematics project.
===Definition 1===
{{Infobox|style=max-width:25em;
|title=Definition 1
|above=<span style="font-size:1.6em;"><mm>\frac{\mathbb{S}^n\subset\mathbb{R}^{n+1} }{\langle x\sim -x\rangle}</mm></span>
}}
<div style="clear:both;"></div>
===Definition 2===
{{Infobox|style=max-width:25em;
|title=Definition 2
|above=<span style="font-size:1.1em;">{{MM|\frac{\mathbb{R}^{n+1}-\{0\} }{\langle x\sim\lambda x\ \vert\ \lambda\in(\mathbb{R}-\{0\})\rangle} }}</span>
}}
* {{M|\mathbb{RP}^n:\eq\{L\in\mathcal{P}(\mathbb{R}^{n+1})\ \vert\ (L,\mathbb{R})\text{ is an 1-} }}[[dimension (vector space)|{{M|\text{dimensional} }}]]{{M|\text{ vector } }}[[vector subspace|{{M|\text{subspace} }}]]{{M|\text{ of }(\mathbb{R}^{n+1},\mathbb{R})\} }}
Of course doesn't tell us what [[topology]] to consider {{M|\mathbb{RP}^n}} with, for that, define the [[map]]:
* {{M|\pi:(\mathbb{R}^{n+1}-\{0\})\rightarrow\mathbb{RP}^n}} given by: {{M|\pi:x\mapsto\langle x\rangle}}
** We use this map to imbue {{M|\mathbb{RP}^n}} with the [[quotient topology]], so:
*** {{MM|\mathbb{RP}^n\cong\frac{\mathbb{R}^{n+1}-\{0\} }{\pi} }} {{XXX|What does this actually mean though? In terms of quotient-ing by an [[equivalence relation]]!}}
<div style="clear:both;"></div>
==Named instances==
* [[Real projective plane]] - {{M|\mathbb{RP}^2}}
==Standard structure==
===As a [[Topological manifold|topological {{n|manifold}}]]===
{{Requires work|grade=A*|msg=Charts}}
==References==
<references/>
{{Definition|Smooth Manifolds|Topological Manifolds|Manifolds}}</rev>
</revisions>
</page>
</pages>
</query>
</api>