Difference between revisions of "Notes:Quotient"

From Maths
Jump to: navigation, search
m
m
Line 1: Line 1:
 +
__TOC__
 +
 +
==Terminology==
 
Let {{M|X}} be a set and let {{M|\sim}} be an [[equivalence relation]] on the elements of {{M|X}}.
 
Let {{M|X}} be a set and let {{M|\sim}} be an [[equivalence relation]] on the elements of {{M|X}}.
 
* Then {{M|\frac{X}{\sim} }} denotes the "[[equivalence class|equivalence classes]]" of {{M|~}}
 
* Then {{M|\frac{X}{\sim} }} denotes the "[[equivalence class|equivalence classes]]" of {{M|~}}

Revision as of 16:04, 18 November 2015

Terminology

Let [ilmath]X[/ilmath] be a set and let [ilmath]\sim[/ilmath] be an equivalence relation on the elements of [ilmath]X[/ilmath].

This is best thought of as a map:

  • [ilmath]\pi:X\rightarrow\frac{X}{\sim} [/ilmath] by [ilmath]\pi:x\mapsto [x][/ilmath] where recall:
    • [ilmath][a]=\{x\in X\vert x\sim a\}[/ilmath], the notation [ilmath][a][/ilmath] makes sense, as by the reflexive property of [ilmath]\sim[/ilmath] we have [ilmath]a\in[a][/ilmath]

Quotient structure

Suppose that [ilmath]\odot:X\times X\rightarrow X[/ilmath] is any map, and writing [ilmath]x\odot y:=\odot(x,y)[/ilmath] when does [ilmath]\odot[/ilmath] induce an 'equivalent' mapping on [ilmath]\frac{X}{\sim} [/ilmath]?

  • This is a mapping: [ilmath]\odot:\frac{X}{\sim}\times\frac{X}{\sim}\rightarrow\frac{X}{\sim} [/ilmath] where [ilmath][x]\odot[y]=[x\odot y][/ilmath]
    • should such an operation be 'well defined' (which means it doesn't matter what representatives we pick of [ilmath][x][/ilmath] and [ilmath][y][/ilmath] in the computation)

Alternatively

We have no concept of [ilmath]\odot[/ilmath] on [ilmath]\frac{X}{\sim} [/ilmath], but we do on [ilmath]X[/ilmath]. The idea is that:

  • Given a [ilmath][x][/ilmath] and a [ilmath][y][/ilmath] we go back
  • To an [ilmath]x[/ilmath] and a [ilmath]y[/ilmath] representing those classes.
  • Compute [ilmath]x\odot y[/ilmath]
  • Then go forward again to [ilmath][x\odot y][/ilmath]

In functional terms we may say:

  • [ilmath]\odot:\frac{X}{\sim}\times\frac{X}{\sim}\rightarrow\frac{X}{\sim} [/ilmath] given by:
    [ilmath]\odot([x],[y])\mapsto\pi(\underbrace{\pi^{-1}([x])\odot\pi^{-1}([y])}_{\text{if }\odot\text{ makes sense} })=\Big[\pi^{-1}([x])\odot\pi^{-1}([y])\Big][/ilmath]

Here [ilmath]\pi^{-1}([x])[/ilmath] is a subset of [ilmath]X[/ilmath] containing exactly those things which are equivalent to [ilmath]x[/ilmath] (as these things all map to [ilmath][x][/ilmath]).

  • We can say [ilmath]A\odot B[/ilmath] (for [ilmath]A\subseteq X[/ilmath] and [ilmath]B\subseteq X[/ilmath]) if [ilmath]a\odot b\sim a'\odot b'[/ilmath]

As then

  • We can define [ilmath]\pi(A)[/ilmath] (for [ilmath]A\subseteq X [/ilmath]) properly if

This all seems very contrived

As a diagram

I seem to be asking when a map (dashed line) is induced such that the following diagram commutes:

[math]\begin{xy}\xymatrix{X\times X \ar@{->}[r]^-\odot \ar@{->}[d]_-{\pi\times\pi}& X \ar@{->}[d]^-{\pi} \\ \frac{X}{\sim}\times\frac{X}{\sim} \ar@{.>}[r]_-{\odot} & \frac{X}{\sim} }\end{xy}[/math]

Diagram