Difference between revisions of "Notes:Quotient"

From Maths
Jump to: navigation, search
m
m (As a diagram: another typo)
 
(2 intermediate revisions by the same user not shown)
Line 26: Line 26:
 
* We can say {{M|A\odot B}} (for {{M|A\subseteq X}} and {{M|B\subseteq X}}) if {{M|a\odot b\sim a'\odot b'}}
 
* We can say {{M|A\odot B}} (for {{M|A\subseteq X}} and {{M|B\subseteq X}}) if {{M|a\odot b\sim a'\odot b'}}
 
As then
 
As then
* We can define {{M|\pi(A)}} (for {{M|A\subseteq X }}) properly if {{M|\forall x\in A\forall y\in A[\pi(x)=\pi(y)] }}
+
* We can define {{M|\pi(A)}} (for {{M|A\subseteq X }}) properly if {{MM|1=\forall x\in A\forall y\in A[\pi(x)=\pi(y)] }}
  
 
This all seems very contrived
 
This all seems very contrived
  
 
===As a diagram===
 
===As a diagram===
I seem to be asking when a map (dashed line) is induced such that the following diagram commutes:
+
I seem to be asking when a map (dotted line) is induced such that the following diagram commutes:
 
{| class="wikitable" border="1"
 
{| class="wikitable" border="1"
 
|-
 
|-
 
| style="font-size:1.4em;" |  
 
| style="font-size:1.4em;" |  
{{MM|1=\begin{xy}\xymatrix{X\times X \ar@{->}[r]^-\odot \ar@{->}[d]_-{\pi\times\pi}& X \ar@{->}[d]^-{\pi} \\  
+
{{MM|1=\begin{xy}\xymatrix{X\times X \ar@{->}[r]^-\odot \ar@{->}[d]_-{\pi\times\pi} \ar@{-->}[dr]^{\pi\circ\odot} & X \ar@{->}[d]^-{\pi} \\  
 
\frac{X}{\sim}\times\frac{X}{\sim} \ar@{.>}[r]_-{\odot} & \frac{X}{\sim} }\end{xy} }}
 
\frac{X}{\sim}\times\frac{X}{\sim} \ar@{.>}[r]_-{\odot} & \frac{X}{\sim} }\end{xy} }}
 
|-
 
|-
 
! Diagram
 
! Diagram
 
|}
 
|}
 +
It is quite simple really:
 +
# The dashed arrow exists by function composition.
 +
# Using the [[Factor (function)]] idea, if we have (for {{M|(v,v')\in V\times V}} and {{M|(u,u')\in V\times V}} - from wanting the diagram to commute):
 +
#* {{M|1=[(\pi\times\pi)(v,v')=(\pi\times\pi)(u,u')]\implies[\pi(+(v,v'))=\pi(+(u,u'))]}} then
 +
#** there exists a unique function, {{M|\odot:\frac{X}{\sim}\times\frac{X}{\sim}\rightarrow\frac{X}{\sim} }} given by: {{M|1=\odot:=(\pi\circ+)\circ(\pi\times\pi)^{-1} }}
 +
Note that while technically these are not functions (as they'd have to be bijective in this case) as FOR ANY {{M|1=x=(\pi\times\pi)^{-1}(a,b)}} we have {{M|\odot(x)}} being the same, it doesn't matter what element of {{M|(\pi\times\pi)^{-1} }} we take.

Latest revision as of 09:38, 24 November 2015

Terminology

Let [ilmath]X[/ilmath] be a set and let [ilmath]\sim[/ilmath] be an equivalence relation on the elements of [ilmath]X[/ilmath].

This is best thought of as a map:

  • [ilmath]\pi:X\rightarrow\frac{X}{\sim} [/ilmath] by [ilmath]\pi:x\mapsto [x][/ilmath] where recall:
    • [ilmath][a]=\{x\in X\vert x\sim a\}[/ilmath], the notation [ilmath][a][/ilmath] makes sense, as by the reflexive property of [ilmath]\sim[/ilmath] we have [ilmath]a\in[a][/ilmath]

Quotient structure

Suppose that [ilmath]\odot:X\times X\rightarrow X[/ilmath] is any map, and writing [ilmath]x\odot y:=\odot(x,y)[/ilmath] when does [ilmath]\odot[/ilmath] induce an 'equivalent' mapping on [ilmath]\frac{X}{\sim} [/ilmath]?

  • This is a mapping: [ilmath]\odot:\frac{X}{\sim}\times\frac{X}{\sim}\rightarrow\frac{X}{\sim} [/ilmath] where [ilmath][x]\odot[y]=[x\odot y][/ilmath]
    • should such an operation be 'well defined' (which means it doesn't matter what representatives we pick of [ilmath][x][/ilmath] and [ilmath][y][/ilmath] in the computation)

Alternatively

We have no concept of [ilmath]\odot[/ilmath] on [ilmath]\frac{X}{\sim} [/ilmath], but we do on [ilmath]X[/ilmath]. The idea is that:

  • Given a [ilmath][x][/ilmath] and a [ilmath][y][/ilmath] we go back
  • To an [ilmath]x[/ilmath] and a [ilmath]y[/ilmath] representing those classes.
  • Compute [ilmath]x\odot y[/ilmath]
  • Then go forward again to [ilmath][x\odot y][/ilmath]

In functional terms we may say:

  • [ilmath]\odot:\frac{X}{\sim}\times\frac{X}{\sim}\rightarrow\frac{X}{\sim} [/ilmath] given by:
    [ilmath]\odot([x],[y])\mapsto\pi(\underbrace{\pi^{-1}([x])\odot\pi^{-1}([y])}_{\text{if }\odot\text{ makes sense} })=\Big[\pi^{-1}([x])\odot\pi^{-1}([y])\Big][/ilmath]

Here [ilmath]\pi^{-1}([x])[/ilmath] is a subset of [ilmath]X[/ilmath] containing exactly those things which are equivalent to [ilmath]x[/ilmath] (as these things all map to [ilmath][x][/ilmath]).

  • We can say [ilmath]A\odot B[/ilmath] (for [ilmath]A\subseteq X[/ilmath] and [ilmath]B\subseteq X[/ilmath]) if [ilmath]a\odot b\sim a'\odot b'[/ilmath]

As then

  • We can define [ilmath]\pi(A)[/ilmath] (for [ilmath]A\subseteq X [/ilmath]) properly if [math]\forall x\in A\forall y\in A[\pi(x)=\pi(y)][/math]

This all seems very contrived

As a diagram

I seem to be asking when a map (dotted line) is induced such that the following diagram commutes:

[math]\begin{xy}\xymatrix{X\times X \ar@{->}[r]^-\odot \ar@{->}[d]_-{\pi\times\pi} \ar@{-->}[dr]^{\pi\circ\odot} & X \ar@{->}[d]^-{\pi} \\ \frac{X}{\sim}\times\frac{X}{\sim} \ar@{.>}[r]_-{\odot} & \frac{X}{\sim} }\end{xy}[/math]

Diagram

It is quite simple really:

  1. The dashed arrow exists by function composition.
  2. Using the Factor (function) idea, if we have (for [ilmath](v,v')\in V\times V[/ilmath] and [ilmath](u,u')\in V\times V[/ilmath] - from wanting the diagram to commute):
    • [ilmath][(\pi\times\pi)(v,v')=(\pi\times\pi)(u,u')]\implies[\pi(+(v,v'))=\pi(+(u,u'))][/ilmath] then
      • there exists a unique function, [ilmath]\odot:\frac{X}{\sim}\times\frac{X}{\sim}\rightarrow\frac{X}{\sim} [/ilmath] given by: [ilmath]\odot:=(\pi\circ+)\circ(\pi\times\pi)^{-1}[/ilmath]

Note that while technically these are not functions (as they'd have to be bijective in this case) as FOR ANY [ilmath]x=(\pi\times\pi)^{-1}(a,b)[/ilmath] we have [ilmath]\odot(x)[/ilmath] being the same, it doesn't matter what element of [ilmath](\pi\times\pi)^{-1} [/ilmath] we take.