Difference between revisions of "Cauchy sequence/Short definition"

From Maths
Jump to: navigation, search
(Created page with "Given a metric space {{M|(X,d)}} and a sequence {{M|1=(x_n)_{n=1}^\infty\subseteq X}} is said to be a ''Cauchy sequence''<ref name="FA">Functiona...")
 
m
 
Line 1: Line 1:
Given a [[Metric space|metric space]] {{M|(X,d)}} and a [[Sequence|sequence]] {{M|1=(x_n)_{n=1}^\infty\subseteq X}} is said to be a ''Cauchy sequence''<ref name="FA">Functional Analysis - George Bachman and Lawrence Narici</ref>{{rAPIKM}} if:
+
<onlyinclude>Given a [[Metric space|metric space]] {{M|(X,d)}} and a [[Sequence|sequence]] {{M|1=(x_n)_{n=1}^\infty\subseteq X}} is said to be a ''Cauchy sequence''<ref name="FA">Functional Analysis - George Bachman and Lawrence Narici</ref>{{rAPIKM}} if:
* {{M|\forall\epsilon > 0\exists N\in\mathbb{N}\forall n,m\in\mathbb{N}[n\ge m> N\implies d(x_m,x_n)<\epsilon]}}
+
* {{M|\forall\epsilon > 0\exists N\in\mathbb{N}\forall n,m\in\mathbb{N}[n\ge m> N\implies d(x_m,x_n)<\epsilon]}}</onlyinclude>
<noinclude>
+
 
==Notes==
 
==Notes==
 
<references group="Note"/>
 
<references group="Note"/>
Line 7: Line 6:
 
<references/>
 
<references/>
 
{{Definition|Real Analysis|Functional Analysis|Topology|Metric Space}}
 
{{Definition|Real Analysis|Functional Analysis|Topology|Metric Space}}
</noinclude>
 

Latest revision as of 13:55, 5 December 2015

Given a metric space [ilmath](X,d)[/ilmath] and a sequence [ilmath](x_n)_{n=1}^\infty\subseteq X[/ilmath] is said to be a Cauchy sequence[1][2] if:

  • [ilmath]\forall\epsilon > 0\exists N\in\mathbb{N}\forall n,m\in\mathbb{N}[n\ge m> N\implies d(x_m,x_n)<\epsilon][/ilmath]

Notes

References

  1. Functional Analysis - George Bachman and Lawrence Narici
  2. Analysis - Part 1: Elements - Krzysztof Maurin