Difference between revisions of "Equivalence of Cauchy sequences/Definition"

From Maths
Jump to: navigation, search
(Created page with "<noinclude> This sub-page is ideal for transclusion, where ever a reminder of the definition of equivalence of Cauchy sequences is required. ==Definition== </noinclude>Given t...")
 
m
 
Line 3: Line 3:
 
==Definition==
 
==Definition==
 
</noinclude>Given two [[Cauchy sequence|Cauchy sequences]], {{M|1=(a_n)_{n=1}^\infty}} and {{M|1=(b_n)_{n=1}^\infty}} in a [[metric space]] {{M|(X,d)}} we define them as [[equivalence relation|equivalent]] if{{rAPIKM}}:
 
</noinclude>Given two [[Cauchy sequence|Cauchy sequences]], {{M|1=(a_n)_{n=1}^\infty}} and {{M|1=(b_n)_{n=1}^\infty}} in a [[metric space]] {{M|(X,d)}} we define them as [[equivalence relation|equivalent]] if{{rAPIKM}}:
* {{MM|1=\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon]}}
+
* {{MM|1=\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon]}}<noinclude>
<noinclude>
+
 
==References==
 
==References==
 
<references/>
 
<references/>

Latest revision as of 20:12, 29 February 2016

This sub-page is ideal for transclusion, where ever a reminder of the definition of equivalence of Cauchy sequences is required.

Definition

Given two Cauchy sequences, [ilmath](a_n)_{n=1}^\infty[/ilmath] and [ilmath](b_n)_{n=1}^\infty[/ilmath] in a metric space [ilmath](X,d)[/ilmath] we define them as equivalent if[1]:

  • [math]\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(a_n,b_n)<\epsilon][/math]

References

  1. Analysis - Part 1: Elements - Krzysztof Maurin