Difference between revisions of "Extending pre-measures to outer-measures"

From Maths
Jump to: navigation, search
m
m
Line 26: Line 26:
 
#*#* Using [[the (pre-)measure of a set is no more than the sum of the (pre-)measures of the elements of a covering for that set]], which states, symbolically:
 
#*#* Using [[the (pre-)measure of a set is no more than the sum of the (pre-)measures of the elements of a covering for that set]], which states, symbolically:
 
#*#** Given a set {{M|A}} and a [[countably infinite]] or [[finite]] ''[[sequence]]'' of sets, {{M|(A_i)}} such that {{M|A\subseteq\bigcup_i A_i}} then {{M|\bar{\mu}(A)\le\sum_i\bar{\mu}(A_i)}}
 
#*#** Given a set {{M|A}} and a [[countably infinite]] or [[finite]] ''[[sequence]]'' of sets, {{M|(A_i)}} such that {{M|A\subseteq\bigcup_i A_i}} then {{M|\bar{\mu}(A)\le\sum_i\bar{\mu}(A_i)}}
#*#* '''Halmos handwaves here''', we want to show that {{M|\bar{\mu}(A)\le\mu^*(A)}}, however all we know is {{M|\mu^*(A)\le\sum_i\bar{\mu}(A_i)}} and {{M|\bar{\mu}(A)\le\sum_i\bar{\mu}(A_i)}} - this isn't very helpful, the solution will be in the nature of the [[infimum]] I am sure
+
#*#* By [[passing to the infimum]] we see that {{M|\bar{\mu}(A)\le\mu^*(A)}} as required.
{{Todo|Finish proof}}
+
 
* Suppose it is not true, that is that we have {{M|\bar{\mu}(A)>\mu^*(A)}}, then {{M|\sum_i\bar{\mu}(A_i)>\mu^*(A)}}... then what....
+
===Problems with proof===
** This confirms it has something to do with the infimum. Investigate in the morning
+
* How do we know the [[infimum]] even exists!
 +
* For the application of ''[[passing to the infimum]]'' how do we know that the [[infimum]] involving {{M|\bar{\mu} }} even exists (this probably uses [[monotonic|monotonicity]] of {{M|\bar{\mu} }} and should be easy to show)
 
==References==
 
==References==
 
<references/>
 
<references/>
 
{{Measure theory navbox|plain}}
 
{{Measure theory navbox|plain}}
 
{{Theorem Of|Measure Theory}}
 
{{Theorem Of|Measure Theory}}

Revision as of 09:30, 16 April 2016

Statement

Given a pre-measure, [ilmath]\bar{\mu} [/ilmath], on a ring of sets, [ilmath]\mathcal{R} [/ilmath], we can define a new function, [ilmath]\mu^*[/ilmath] which is[1]:

Given by:

  • [ilmath]\mu^*:\mathcal{H}_{\sigma_R}(\mathcal{R})\rightarrow\bar{\mathbb{R} }_{\ge0} [/ilmath]
    • [math]\mu^*:A\mapsto\text{inf}\left\{\left.\sum^\infty_{n=1}\bar{\mu}(A_n)\right\vert(A_n)_{n=1}^\infty\subseteq\mathcal{R}\wedge A\subseteq\bigcup_{n=1}^\infty A_n\right\}[/math]

The statement of the theorem is that this [ilmath]\mu^*[/ilmath] is indeed an outer-measure

Proof

Recall the definition of an outer-measure, we must show [ilmath]\mu^*[/ilmath] satisfies this.

An outer-measure, [ilmath]\mu^*[/ilmath] is a set function from a hereditary [ilmath]\sigma[/ilmath]-ring, [ilmath]\mathcal{H} [/ilmath], to the (positive) extended real values, [ilmath]\bar{\mathbb{R} }_{\ge0} [/ilmath], that is[1]:

  • [ilmath]\forall A\in\mathcal{H}[\mu^*(A)\ge 0][/ilmath] - non-negative
  • [ilmath]\forall A,B\in\mathcal{H}[A\subseteq B\implies \mu^*(A)\le\mu^*(B)][/ilmath] - monotonic
  • [ilmath] \forall ({ A_n })_{ n = 1 }^{ \infty }\subseteq \mathcal{H} [\mu^*(\bigcup_{n=1}^\infty A_n)\le\sum^\infty_{n=1}\mu^*(A_n)] [/ilmath] - countably subadditive

In words, [ilmath]\mu^*[/ilmath] is:

  1. We claimed that [ilmath]\mu^*[/ilmath] is an extension of [ilmath]\bar{\mu} [/ilmath], this means that: [ilmath]\forall A\in\mathcal{R}[\mu^*=\bar{\mu}][/ilmath]. Let us check this.
    • Let [ilmath]A\in\mathcal{R} [/ilmath] be given.
      1. First we must bound [ilmath]\mu^*[/ilmath] above. This is because [ilmath][\mu^*(A)=\bar{\mu}(A)]\iff[\mu^*(A)\ge\bar{\mu}(A)\wedge\bar{\mu}(A)\ge\mu^*(A)][/ilmath]
        • Remember that [ilmath]\emptyset\in\mathcal{R} [/ilmath] as [ilmath]\mathcal{ R } [/ilmath] is a ring of sets
          • We can now define a sequence, [ilmath] ({ A_n })_{ n = 1 }^{ \infty }\subseteq \mathcal{R} [/ilmath] as follows:
            • [ilmath]A_1=A[/ilmath]
            • [ilmath]A_n=\emptyset[/ilmath] for [ilmath]n\ge 2[/ilmath]
          • So [ilmath] ({ A_n })_{ n = 1 }^{ \infty }\subseteq \mathcal{R} [/ilmath] is [ilmath](A,\emptyset,\emptyset,\ldots)[/ilmath]
          • Now [ilmath]\sum_{n=1}^\infty \bar{\mu}(A_n)=\bar{\mu}(A)+\bar{\mu}(\emptyset)+\bar{\mu}(\emptyset)+\ldots=\bar{\mu}(A)+0+0+\ldots=\bar{\mu}(\emptyset)[/ilmath]
        • So [ilmath]\mu^*(A)\le\bar{\mu}(A)[/ilmath] (as [ilmath]\mu^*[/ilmath] is the defined as the infimum of such expressions, all we have done is find an upper-bound for it)
      2. Now we must bound [ilmath]\mu^*[/ilmath] below (by [ilmath]\bar{\mu}(A)[/ilmath]) to show they're equal.

Problems with proof

  • How do we know the infimum even exists!
  • For the application of passing to the infimum how do we know that the infimum involving [ilmath]\bar{\mu} [/ilmath] even exists (this probably uses monotonicity of [ilmath]\bar{\mu} [/ilmath] and should be easy to show)

References

  1. 1.0 1.1 Measure Theory - Paul R. Halmos