Difference between revisions of "Relation"
From Maths
m |
m (→Types of relation: fixing typo) |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | A | + | ==Definition== |
+ | A ''binary relation'' {{M|\mathcal{R} }} (or just a ''relation'' {{M|R}}<ref group="Note">A binary relation should be assumed if just relation is specified</ref>) between two sets is a subset of the [[Cartesian product]] of two sets{{rAPIKM}}<ref name="TAPL">Types and Programming Languages - Benjamin C. Peirce</ref>, that is: | ||
+ | * {{M|\mathcal{R}\subseteq X\times Y}} | ||
+ | We say that {{M|\mathcal{R} }} is a ''relation in {{M|X}}''<ref name="APIKM"/> if: | ||
+ | * {{M|\mathcal{R}\subseteq X\times X}} (note that {{M|\mathcal{R} }} is sometimes<ref name="APIKM"/> called a ''graph'') | ||
+ | ** For example {{M|<}} is a relation in the set of {{M|\mathbb{Z} }} (the integers) | ||
− | |||
− | + | If {{M|(x,y)\in\mathcal{R} }} then we: | |
− | + | * Say: ''{{M|x}} is in relation {{M|\mathcal{R} }} with {{M|y}}'' | |
− | == | + | * Write: {{M|x\mathcal{R}y}} for short. |
− | + | ==Operations== | |
− | === | + | Here {{M|\mathcal{R} }} is a relation between {{M|X}} and {{M|Y}}, that is {{M|\mathcal{R}\subseteq X\times Y}}, and {{M|\mathcal{S}\subseteq Y\times Z}} |
− | + | {| class="wikitable" border="1" | |
+ | |- | ||
+ | ! Name | ||
+ | ! Notation | ||
+ | ! Definition | ||
+ | |- | ||
+ | | NO IDEA | ||
+ | | {{M|1=P_X\mathcal{R} }}<ref name="APIKM"/> | ||
+ | | {{M|1=P_X\mathcal{R}=\{x\in X\vert\ \exists y:\ x\mathcal{R}y\} }} - a [[Function|function]] is (among other things) a case where {{M|1=P_Xf=X}} | ||
+ | |- | ||
+ | ! Inverse relation | ||
+ | | {{M|\mathcal{R}^{-1} }}<ref name="APIKM"/> | ||
+ | | {{M|1=\mathcal{R}^{-1}:=\{(y,x)\in Y\times X\vert\ x\mathcal{R}y\} }} | ||
+ | |- | ||
+ | ! Composing relations | ||
+ | | {{M|\mathcal{R}\circ\mathcal{S} }}<ref name="APIKM"/> | ||
+ | | {{M|1=\mathcal{R}\circ\mathcal{S}:=\{(x,z)\in X\times Z\vert\ \exists y\in Y[x\mathcal{R}y\wedge y\mathcal{S}z]\} }} | ||
+ | |} | ||
− | < | + | ==Simple examples of relations== |
+ | # The ''empty relation''<ref name="APIKM"/>, {{M|\emptyset\subset X\times X}} is of course a relation | ||
+ | # The ''total relation''<ref name="APIKM"/>, {{M|1=\mathcal{R}=X\times X}} that relates everything to everything | ||
+ | # The ''identity relation''<ref name="APIKM"/>, {{M|1=\text{id}_X:=\text{id}:=\{(x,y)\in X\times X\vert x=y\}=\{(x,x)\in X\times X\vert x\in X\} }} | ||
+ | #* This is also known as<ref name="APIKM"/> ''the diagonal of the square {{M|X\times X}}'' | ||
− | === | + | ==Types of relation== |
− | + | Here {{M|\mathcal{R}\subseteq X\times X}} | |
+ | {| class="wikitable" border="1" | ||
+ | |- | ||
+ | ! Name | ||
+ | ! Set relation | ||
+ | ! Statement | ||
+ | ! Notes | ||
+ | |- | ||
+ | ! {{Anchor|Type_reflexive}}Reflexive<ref name="APIKM"/> | ||
+ | | {{M|\text{id}_X\subseteq\mathcal{R} }} | ||
+ | | {{M|\forall x\in X[x\mathcal{R}x]}} | ||
+ | | Every element is related to itself (example, equality) | ||
+ | |- | ||
+ | ! {{Anchor|Type_symmetric}}Symmetric<ref name="APIKM"/> | ||
+ | | {{M|\mathcal{R}\subseteq\mathcal{R}^{-1} }} | ||
+ | | {{M|\forall x\in X\forall y\in X[x\mathcal{R}y\implies y\mathcal{R}x]}} | ||
+ | | (example, equality) | ||
+ | |- | ||
+ | ! {{Anchor|Type_transitive}}Transitive<ref name="APIKM"/> | ||
+ | | {{M|\mathcal{R}\circ\mathcal{R}\subseteq\mathcal{R} }} | ||
+ | | {{M|\forall x,y,z\in X[(x\mathcal{R}y\wedge y\mathcal{R}z)\implies x\mathcal{R}z]}} | ||
+ | | (example, equality, {{M|<}}) | ||
+ | |- | ||
+ | ! {{Anchor|Type_antisymmetric|Type_identitive}}Antisymmetric<ref name="RAAA">Real and Abstract Analysis - Edwin Hewitt and Karl Stromberg</ref><br/>({{AKA}} Identitive<ref name="APIKM"/>) | ||
+ | | {{M|\mathcal{R}\cap\mathcal{R}^{-1}\subseteq\text{id}_X}} | ||
+ | | {{M|1=\forall x\in X\forall y\in X[(x\mathcal{R}y\wedge y\mathcal{R}x)\implies x=y]}} | ||
+ | | {{Todo|What about a relation like 1r2 1r1 2r1 and 2r2}} | ||
+ | |- | ||
+ | ! {{Anchor|Type_connected}}Connected<ref name="APIKM"/> | ||
+ | | {{M|1=\mathcal{R}\cup\mathcal{R}^{-1}=X\times X}} | ||
+ | | | ||
+ | | {{Todo|Work out what this means}} | ||
+ | |- | ||
+ | ! {{Anchor|Type_asymmetric}}Asymmetric<ref name="APIKM"/> | ||
+ | | {{M|1=\mathcal{R}\subseteq\complement(\mathcal{R}^{-1})}} | ||
+ | | {{M|1=\forall x\in X\forall y\in X[x\mathcal{R}y\implies (y,x)\notin\mathcal{R}]}} | ||
+ | | Like {{M|<}} (see: [[Contrapositive]]) | ||
+ | |- | ||
+ | ! {{Anchor|Type_right-unique}}Right-unique<ref name="APIKM"/> | ||
+ | | {{M|1=\mathcal{R}^{-1}\circ\mathcal{R}\subseteq\text{id}_X}} | ||
+ | | {{M|1=\forall x,y,z\in X[(x\mathcal{R}y\wedge x\mathcal{R}z)\implies y=z]}} | ||
+ | | This is the definition of a [[function]] | ||
+ | |- | ||
+ | ! {{Anchor|Type_left-unique}}Left-unique<ref name="APIKM"/> | ||
+ | | {{M|1=\mathcal{R}\circ\mathcal{R}^{-1}\subseteq\text{id}_X}} | ||
+ | | {{M|1=\forall x,y,z\in X[(x\mathcal{R}y\wedge z\mathcal{R}y)\implies x=z]}} | ||
+ | | | ||
+ | |- | ||
+ | ! {{Anchor|Type_mutually-unique}}Mutually unique<ref name="APIKM"/> | ||
+ | | Both right and left unique | ||
+ | | | ||
+ | | {{Todo|Investigate}} | ||
+ | |} | ||
− | + | ==Examples of binary relations== | |
− | + | * [[Function|Functions / mappings]] | |
− | = | + | * [[Equivalence relation|Equivalence relations]] |
− | + | * [[Ordering|Orderings]] | |
− | + | * [[Preordering|Preorderings]] | |
− | + | ==Notes== | |
− | + | <references group="Note"/> | |
− | + | ==References== | |
− | + | <references/> | |
− | + | {{Relations navbox|plain}} | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | == | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
{{Definition|Set Theory}} | {{Definition|Set Theory}} |
Latest revision as of 20:07, 20 April 2016
Contents
Definition
A binary relation [ilmath]\mathcal{R} [/ilmath] (or just a relation [ilmath]R[/ilmath][Note 1]) between two sets is a subset of the Cartesian product of two sets[1][2], that is:
- [ilmath]\mathcal{R}\subseteq X\times Y[/ilmath]
We say that [ilmath]\mathcal{R} [/ilmath] is a relation in [ilmath]X[/ilmath][1] if:
- [ilmath]\mathcal{R}\subseteq X\times X[/ilmath] (note that [ilmath]\mathcal{R} [/ilmath] is sometimes[1] called a graph)
- For example [ilmath]<[/ilmath] is a relation in the set of [ilmath]\mathbb{Z} [/ilmath] (the integers)
If [ilmath](x,y)\in\mathcal{R} [/ilmath] then we:
- Say: [ilmath]x[/ilmath] is in relation [ilmath]\mathcal{R} [/ilmath] with [ilmath]y[/ilmath]
- Write: [ilmath]x\mathcal{R}y[/ilmath] for short.
Operations
Here [ilmath]\mathcal{R} [/ilmath] is a relation between [ilmath]X[/ilmath] and [ilmath]Y[/ilmath], that is [ilmath]\mathcal{R}\subseteq X\times Y[/ilmath], and [ilmath]\mathcal{S}\subseteq Y\times Z[/ilmath]
Name | Notation | Definition |
---|---|---|
NO IDEA | [ilmath]P_X\mathcal{R}[/ilmath][1] | [ilmath]P_X\mathcal{R}=\{x\in X\vert\ \exists y:\ x\mathcal{R}y\}[/ilmath] - a function is (among other things) a case where [ilmath]P_Xf=X[/ilmath] |
Inverse relation | [ilmath]\mathcal{R}^{-1} [/ilmath][1] | [ilmath]\mathcal{R}^{-1}:=\{(y,x)\in Y\times X\vert\ x\mathcal{R}y\}[/ilmath] |
Composing relations | [ilmath]\mathcal{R}\circ\mathcal{S} [/ilmath][1] | [ilmath]\mathcal{R}\circ\mathcal{S}:=\{(x,z)\in X\times Z\vert\ \exists y\in Y[x\mathcal{R}y\wedge y\mathcal{S}z]\}[/ilmath] |
Simple examples of relations
- The empty relation[1], [ilmath]\emptyset\subset X\times X[/ilmath] is of course a relation
- The total relation[1], [ilmath]\mathcal{R}=X\times X[/ilmath] that relates everything to everything
- The identity relation[1], [ilmath]\text{id}_X:=\text{id}:=\{(x,y)\in X\times X\vert x=y\}=\{(x,x)\in X\times X\vert x\in X\}[/ilmath]
- This is also known as[1] the diagonal of the square [ilmath]X\times X[/ilmath]
Types of relation
Here [ilmath]\mathcal{R}\subseteq X\times X[/ilmath]
Name | Set relation | Statement | Notes |
---|---|---|---|
Reflexive[1] | [ilmath]\text{id}_X\subseteq\mathcal{R} [/ilmath] | [ilmath]\forall x\in X[x\mathcal{R}x][/ilmath] | Every element is related to itself (example, equality) |
Symmetric[1] | [ilmath]\mathcal{R}\subseteq\mathcal{R}^{-1} [/ilmath] | [ilmath]\forall x\in X\forall y\in X[x\mathcal{R}y\implies y\mathcal{R}x][/ilmath] | (example, equality) |
Transitive[1] | [ilmath]\mathcal{R}\circ\mathcal{R}\subseteq\mathcal{R} [/ilmath] | [ilmath]\forall x,y,z\in X[(x\mathcal{R}y\wedge y\mathcal{R}z)\implies x\mathcal{R}z][/ilmath] | (example, equality, [ilmath]<[/ilmath]) |
Antisymmetric[3] (AKA Identitive[1]) |
[ilmath]\mathcal{R}\cap\mathcal{R}^{-1}\subseteq\text{id}_X[/ilmath] | [ilmath]\forall x\in X\forall y\in X[(x\mathcal{R}y\wedge y\mathcal{R}x)\implies x=y][/ilmath] |
TODO: What about a relation like 1r2 1r1 2r1 and 2r2 |
Connected[1] | [ilmath]\mathcal{R}\cup\mathcal{R}^{-1}=X\times X[/ilmath] |
TODO: Work out what this means | |
Asymmetric[1] | [ilmath]\mathcal{R}\subseteq\complement(\mathcal{R}^{-1})[/ilmath] | [ilmath]\forall x\in X\forall y\in X[x\mathcal{R}y\implies (y,x)\notin\mathcal{R}][/ilmath] | Like [ilmath]<[/ilmath] (see: Contrapositive) |
Right-unique[1] | [ilmath]\mathcal{R}^{-1}\circ\mathcal{R}\subseteq\text{id}_X[/ilmath] | [ilmath]\forall x,y,z\in X[(x\mathcal{R}y\wedge x\mathcal{R}z)\implies y=z][/ilmath] | This is the definition of a function |
Left-unique[1] | [ilmath]\mathcal{R}\circ\mathcal{R}^{-1}\subseteq\text{id}_X[/ilmath] | [ilmath]\forall x,y,z\in X[(x\mathcal{R}y\wedge z\mathcal{R}y)\implies x=z][/ilmath] | |
Mutually unique[1] | Both right and left unique |
TODO: Investigate |
Examples of binary relations
Notes
- ↑ A binary relation should be assumed if just relation is specified
References
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 Analysis - Part 1: Elements - Krzysztof Maurin
- ↑ Types and Programming Languages - Benjamin C. Peirce
- ↑ Real and Abstract Analysis - Edwin Hewitt and Karl Stromberg
|