Difference between revisions of "Normal topological space"

From Maths
Jump to: navigation, search
m
m
 
(One intermediate revision by the same user not shown)
Line 7: Line 7:
 
* [[Topological separation axioms]]
 
* [[Topological separation axioms]]
 
* [[Regular topological space]]
 
* [[Regular topological space]]
 +
* [[Urysohn's lemma]]
 +
* [[Tietze extension theorem]]
 
==References==
 
==References==
 
<references/>
 
<references/>
 
{{Topology navbox|plain}}
 
{{Topology navbox|plain}}
 
{{Definition|Topology}}
 
{{Definition|Topology}}

Latest revision as of 00:14, 4 May 2016

Definition

A topological space, [ilmath](X,\mathcal{ J })[/ilmath], is said to be normal if[1]:

  • [ilmath]\forall E,F\in C(\mathcal{J})\ \exists U,V\in\mathcal{J}[E\cap F=\emptyset\implies(U\cap V=\emptyset\wedge E\subseteq U\wedge F\subseteq V)][/ilmath] - (here [ilmath]C(\mathcal{J})[/ilmath] denotes the collection of closed sets of the topology, [ilmath]\mathcal{J} [/ilmath])

Equivalent statements


TODO: Make that sentence easier to read


See also

References

  1. Introduction to Topology - Theodore W. Gamelin & Robert Everist Greene