Difference between revisions of "Tensor product of vector spaces"
From Maths
m (Reverted edits by JessicaBelinda133 (talk) to last revision by Alec) |
(Actually created page) |
||
Line 1: | Line 1: | ||
− | Currently in the notes stage, see [[Notes:Tensor product]] | + | {{Stub page|grade=A*|msg=Demote once more of it is finished!}} |
+ | : {{strike|Currently in the notes stage, see [[Notes:Tensor product]]}} | ||
+ | __TOC__ | ||
+ | : {{Note|Any first-time readers should look at the [[#Abstract definition|abstract definition]] first}} | ||
+ | ==Definition== | ||
+ | Let {{M|\mathbb{F} }} be a [[field]] and let {{M|\big((V_i,\mathbb{F})\big)_{i\eq 1}^k}} be a family of [[vector spaces]] over {{M|\mathbb{F} }}. Let {{M|\mathcal{F}(V_1\times\cdots\times V_k)}} denote the [[free vector space]] on {{M|\prod_{i\eq 1}^kV_k}}. We define the (abstract) ''tensor product'' of {{M|V_1,\ldots,V_k}} as{{rITSMJML}}: | ||
+ | * {{M|V_1\otimes\cdots\otimes V_k:\eq\dfrac{\mathcal{F}(V_1\times\cdots\times V_k)}{\mathcal{R} } }}<!-- | ||
+ | |||
+ | NOTE ABOUT THE SIZE OF F(V_1X...XV_k) | ||
+ | |||
+ | --><ref group="Note">Take a moment to respect just how vast the space {{M|\mathcal{F}(V_1\times\cdots\times V_k)}} is (especially if {{M|\mathbb{F}:\eq\mathbb{R} }} for example). Remember that this is ''not'' the space {{M|V_1\times\cdots\times V_k}} even though we write them as [[tuples]]. It is a ''huge'' space. | ||
+ | * {{XXX|Flesh out this note}}</ref><!-- | ||
+ | |||
+ | END OF SIZEOF F(V_1X...XV_k) NOTE | ||
+ | |||
+ | --> where {{M|\mathcal{R} }} is defined as follows: | ||
+ | ** {{M|\mathcal{R} }} denotes the {{link|span|vector space}} of all the union of the following two [[sets]]: | ||
+ | **# {{M|\big\{ (v_1,\ldots,v_{i-1},av_i,v_{i+1},\ldots,v_k)-a(v_1,\ldots,v_k)\ \big\vert\ i\in\{1,\ldots,k\}\wedge a\in\mathbb{F}\wedge\forall j\in\{1,\ldots,k\}[v_j\in V_j]\big\} }} | ||
+ | **# {{M|\big\{(v_1,\ldots,v_{i-1},v_i+v'_i,v_{i+1},\ldots,v_k)-(v_1,\ldots,v_k)-(v_1,\ldots,v_{i-1},v'_i,v_{i+1},\ldots,v_k)\ \big\vert\ i\in\{1,\ldots,k\}\wedge v'_i\in V_i\wedge\forall j\in\{1,\ldots,k\}[v_j\in V_j]\big\} }} | ||
+ | ==Abstract definition== | ||
+ | ==[[Characteristic property of the tensor product|Characteristic property]]== | ||
+ | {{:Characteristic property of the tensor product/Statement}} | ||
+ | ==Notes== | ||
+ | <references group="Note"/> | ||
+ | ==References== | ||
+ | <references/> | ||
+ | {{Definition|Linear Algebra|Abstract Algebra}} |
Revision as of 23:53, 3 December 2016
Stub grade: A*
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Demote once more of it is finished!
- Currently in the notes stage, see Notes:Tensor product
- Any first-time readers should look at the abstract definition first
Definition
Let [ilmath]\mathbb{F} [/ilmath] be a field and let [ilmath]\big((V_i,\mathbb{F})\big)_{i\eq 1}^k[/ilmath] be a family of vector spaces over [ilmath]\mathbb{F} [/ilmath]. Let [ilmath]\mathcal{F}(V_1\times\cdots\times V_k)[/ilmath] denote the free vector space on [ilmath]\prod_{i\eq 1}^kV_k[/ilmath]. We define the (abstract) tensor product of [ilmath]V_1,\ldots,V_k[/ilmath] as[1]:
- [ilmath]V_1\otimes\cdots\otimes V_k:\eq\dfrac{\mathcal{F}(V_1\times\cdots\times V_k)}{\mathcal{R} } [/ilmath][Note 1] where [ilmath]\mathcal{R} [/ilmath] is defined as follows:
- [ilmath]\mathcal{R} [/ilmath] denotes the span of all the union of the following two sets:
- [ilmath]\big\{ (v_1,\ldots,v_{i-1},av_i,v_{i+1},\ldots,v_k)-a(v_1,\ldots,v_k)\ \big\vert\ i\in\{1,\ldots,k\}\wedge a\in\mathbb{F}\wedge\forall j\in\{1,\ldots,k\}[v_j\in V_j]\big\} [/ilmath]
- [ilmath]\big\{(v_1,\ldots,v_{i-1},v_i+v'_i,v_{i+1},\ldots,v_k)-(v_1,\ldots,v_k)-(v_1,\ldots,v_{i-1},v'_i,v_{i+1},\ldots,v_k)\ \big\vert\ i\in\{1,\ldots,k\}\wedge v'_i\in V_i\wedge\forall j\in\{1,\ldots,k\}[v_j\in V_j]\big\} [/ilmath]
- [ilmath]\mathcal{R} [/ilmath] denotes the span of all the union of the following two sets:
Abstract definition
Characteristic property
Let [ilmath]\mathbb{F} [/ilmath] be a field and let [ilmath]\big((V_i,\mathbb{F})\big)_{i\eq 1}^k[/ilmath] be a family of finite dimensional vector spaces over [ilmath]\mathbb{F} [/ilmath]. Let [ilmath](W,\mathbb{F})[/ilmath] be another vector space over [ilmath]\mathbb{F} [/ilmath]. Then[1]:- If [ilmath]A:V_1\times\cdots\times V_k\rightarrow W[/ilmath] is any multilinear map
- there exists a unique linear map, [ilmath]\overline{A}:V_1\otimes\cdots\otimes V_k\rightarrow X[/ilmath] such that:
- [ilmath]\overline{A}\circ p\eq A[/ilmath] (that is: the diagram on the right commutes)
- there exists a unique linear map, [ilmath]\overline{A}:V_1\otimes\cdots\otimes V_k\rightarrow X[/ilmath] such that:
Where [ilmath]p:V_1\times\cdots\times V_k\rightarrow V_1\otimes\cdots\otimes V_k[/ilmath] by [ilmath]p:(v_1,\ldots,v_k)\mapsto v_1\otimes\cdots\otimes v_k[/ilmath] (and is [ilmath]p[/ilmath] is multilinear)
Notes
- ↑ Take a moment to respect just how vast the space [ilmath]\mathcal{F}(V_1\times\cdots\times V_k)[/ilmath] is (especially if [ilmath]\mathbb{F}:\eq\mathbb{R} [/ilmath] for example). Remember that this is not the space [ilmath]V_1\times\cdots\times V_k[/ilmath] even though we write them as tuples. It is a huge space.
- TODO: Flesh out this note
-