Difference between revisions of "Tensor product of vector spaces"
(Actually created page) |
m (Alec moved page Tensor product to Tensor product of vector spaces without leaving a redirect: There's another tensor product - at 360 views ish) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
: {{Note|Any first-time readers should look at the [[#Abstract definition|abstract definition]] first}} | : {{Note|Any first-time readers should look at the [[#Abstract definition|abstract definition]] first}} | ||
==Definition== | ==Definition== | ||
− | Let {{M|\mathbb{F} }} be a [[field]] and let {{M|\big((V_i,\mathbb{F})\big)_{i\eq 1}^k}} be a family of [[vector spaces]] over {{M|\mathbb{F} }}. Let {{M|\mathcal{F}(V_1\times\cdots\times V_k)}} denote the [[free vector space]] on {{M|\prod_{i\eq 1}^kV_k}}. We define the (abstract) ''tensor product'' of {{M|V_1,\ldots,V_k}} as{{rITSMJML}}: | + | Let {{M|\mathbb{F} }} be a [[field]] and let {{M|\big((V_i,\mathbb{F})\big)_{i\eq 1}^k}} be a family of [[vector spaces]] over {{M|\mathbb{F} }}. Let {{M|\mathcal{F}(V_1\times\cdots\times V_k)}} denote the [[free vector space generated by|free vector space]] on {{M|\prod_{i\eq 1}^kV_k}}. We define the (abstract) ''tensor product'' of {{M|V_1,\ldots,V_k}} as{{rITSMJML}}: |
* {{M|V_1\otimes\cdots\otimes V_k:\eq\dfrac{\mathcal{F}(V_1\times\cdots\times V_k)}{\mathcal{R} } }}<!-- | * {{M|V_1\otimes\cdots\otimes V_k:\eq\dfrac{\mathcal{F}(V_1\times\cdots\times V_k)}{\mathcal{R} } }}<!-- | ||
Line 18: | Line 18: | ||
**# {{M|\big\{ (v_1,\ldots,v_{i-1},av_i,v_{i+1},\ldots,v_k)-a(v_1,\ldots,v_k)\ \big\vert\ i\in\{1,\ldots,k\}\wedge a\in\mathbb{F}\wedge\forall j\in\{1,\ldots,k\}[v_j\in V_j]\big\} }} | **# {{M|\big\{ (v_1,\ldots,v_{i-1},av_i,v_{i+1},\ldots,v_k)-a(v_1,\ldots,v_k)\ \big\vert\ i\in\{1,\ldots,k\}\wedge a\in\mathbb{F}\wedge\forall j\in\{1,\ldots,k\}[v_j\in V_j]\big\} }} | ||
**# {{M|\big\{(v_1,\ldots,v_{i-1},v_i+v'_i,v_{i+1},\ldots,v_k)-(v_1,\ldots,v_k)-(v_1,\ldots,v_{i-1},v'_i,v_{i+1},\ldots,v_k)\ \big\vert\ i\in\{1,\ldots,k\}\wedge v'_i\in V_i\wedge\forall j\in\{1,\ldots,k\}[v_j\in V_j]\big\} }} | **# {{M|\big\{(v_1,\ldots,v_{i-1},v_i+v'_i,v_{i+1},\ldots,v_k)-(v_1,\ldots,v_k)-(v_1,\ldots,v_{i-1},v'_i,v_{i+1},\ldots,v_k)\ \big\vert\ i\in\{1,\ldots,k\}\wedge v'_i\in V_i\wedge\forall j\in\{1,\ldots,k\}[v_j\in V_j]\big\} }} | ||
+ | |||
==Abstract definition== | ==Abstract definition== | ||
+ | ==[[Basis for the tensor product|Basis]]== | ||
+ | {{:Basis for the tensor product/Statement}} | ||
==[[Characteristic property of the tensor product|Characteristic property]]== | ==[[Characteristic property of the tensor product|Characteristic property]]== | ||
{{:Characteristic property of the tensor product/Statement}} | {{:Characteristic property of the tensor product/Statement}} |
Latest revision as of 21:33, 22 December 2016
- Currently in the notes stage, see Notes:Tensor product
- Any first-time readers should look at the abstract definition first
Definition
Let [ilmath]\mathbb{F} [/ilmath] be a field and let [ilmath]\big((V_i,\mathbb{F})\big)_{i\eq 1}^k[/ilmath] be a family of vector spaces over [ilmath]\mathbb{F} [/ilmath]. Let [ilmath]\mathcal{F}(V_1\times\cdots\times V_k)[/ilmath] denote the free vector space on [ilmath]\prod_{i\eq 1}^kV_k[/ilmath]. We define the (abstract) tensor product of [ilmath]V_1,\ldots,V_k[/ilmath] as[1]:
- [ilmath]V_1\otimes\cdots\otimes V_k:\eq\dfrac{\mathcal{F}(V_1\times\cdots\times V_k)}{\mathcal{R} } [/ilmath][Note 1] where [ilmath]\mathcal{R} [/ilmath] is defined as follows:
- [ilmath]\mathcal{R} [/ilmath] denotes the span of all the union of the following two sets:
- [ilmath]\big\{ (v_1,\ldots,v_{i-1},av_i,v_{i+1},\ldots,v_k)-a(v_1,\ldots,v_k)\ \big\vert\ i\in\{1,\ldots,k\}\wedge a\in\mathbb{F}\wedge\forall j\in\{1,\ldots,k\}[v_j\in V_j]\big\} [/ilmath]
- [ilmath]\big\{(v_1,\ldots,v_{i-1},v_i+v'_i,v_{i+1},\ldots,v_k)-(v_1,\ldots,v_k)-(v_1,\ldots,v_{i-1},v'_i,v_{i+1},\ldots,v_k)\ \big\vert\ i\in\{1,\ldots,k\}\wedge v'_i\in V_i\wedge\forall j\in\{1,\ldots,k\}[v_j\in V_j]\big\} [/ilmath]
- [ilmath]\mathcal{R} [/ilmath] denotes the span of all the union of the following two sets:
Abstract definition
Basis
Let [ilmath]\mathbb{F} [/ilmath] be a field and let [ilmath]\big((V_i,\mathbb{F})\big)_{i\eq 1}^k[/ilmath] be a family of finite dimensional vector spaces. Let [ilmath]n_i:\eq\text{Dim}(V_i)[/ilmath] and [ilmath]e^{(i)}_1,\ldots,e^{(i)}_{n_i} [/ilmath] denote a basis for [ilmath]V_i[/ilmath], then we claim[1]:
- [math]\mathcal{B}:\eq\left\{e^{(1)}_{i_1}\otimes\cdots\otimes e^{(k)}_{i_k}\ \big\vert\ \forall j\in\{1,\ldots,k\}\subset\mathbb{N}[1\le i_j\le n_j]\right\} [/math]
Is a basis for the tensor product of the family of vector spaces, [ilmath]V_1\otimes\cdots\otimes V_k[/ilmath]
Note that the number of elements of [ilmath]\mathcal{B} [/ilmath], denoted [ilmath]\vert\mathcal{B}\vert[/ilmath], is [ilmath]\prod_{i\eq 1}^kn_i[/ilmath] or [ilmath]\prod_{i\eq 1}^k\text{Dim}(V_i)[/ilmath], thus:
- [ilmath]\text{Dim}(V_1\otimes\cdots\otimes V_k)\eq\prod_{i\eq 1}^k n_i[/ilmath][1]
Characteristic property
Let [ilmath]\mathbb{F} [/ilmath] be a field and let [ilmath]\big((V_i,\mathbb{F})\big)_{i\eq 1}^k[/ilmath] be a family of finite dimensional vector spaces over [ilmath]\mathbb{F} [/ilmath]. Let [ilmath](W,\mathbb{F})[/ilmath] be another vector space over [ilmath]\mathbb{F} [/ilmath]. Then[1]:- If [ilmath]A:V_1\times\cdots\times V_k\rightarrow W[/ilmath] is any multilinear map
- there exists a unique linear map, [ilmath]\overline{A}:V_1\otimes\cdots\otimes V_k\rightarrow X[/ilmath] such that:
- [ilmath]\overline{A}\circ p\eq A[/ilmath] (that is: the diagram on the right commutes)
- there exists a unique linear map, [ilmath]\overline{A}:V_1\otimes\cdots\otimes V_k\rightarrow X[/ilmath] such that:
Where [ilmath]p:V_1\times\cdots\times V_k\rightarrow V_1\otimes\cdots\otimes V_k[/ilmath] by [ilmath]p:(v_1,\ldots,v_k)\mapsto v_1\otimes\cdots\otimes v_k[/ilmath] (and is [ilmath]p[/ilmath] is multilinear)
Notes
- ↑ Take a moment to respect just how vast the space [ilmath]\mathcal{F}(V_1\times\cdots\times V_k)[/ilmath] is (especially if [ilmath]\mathbb{F}:\eq\mathbb{R} [/ilmath] for example). Remember that this is not the space [ilmath]V_1\times\cdots\times V_k[/ilmath] even though we write them as tuples. It is a huge space.
- TODO: Flesh out this note
-