Difference between revisions of "Inner product"
m (Todo: add trivial properties, a bit more rejigging) |
m |
||
(13 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | {{:Inner product/Infobox}} | ||
==Definition== | ==Definition== | ||
Given a {{Vector space}} (where {{M|F}} is either {{M|\mathbb{R} }} or {{M|\mathbb{C} }}), an ''inner product''<ref>http://en.wikipedia.org/w/index.php?title=Inner_product_space&oldid=651022885</ref><ref>Functional Analysis I - Lecture Notes - Richard Sharp - Sep 2014</ref><ref name="FA">Functional Analysis - George Bachman and Lawrence Narici</ref> is a map: | Given a {{Vector space}} (where {{M|F}} is either {{M|\mathbb{R} }} or {{M|\mathbb{C} }}), an ''inner product''<ref>http://en.wikipedia.org/w/index.php?title=Inner_product_space&oldid=651022885</ref><ref>Functional Analysis I - Lecture Notes - Richard Sharp - Sep 2014</ref><ref name="FA">Functional Analysis - George Bachman and Lawrence Narici</ref> is a map: | ||
Line 10: | Line 11: | ||
* <math>\langle x,x\rangle \ge 0</math> but specifically: | * <math>\langle x,x\rangle \ge 0</math> but specifically: | ||
** <math>\langle x,x\rangle=0\iff x=0</math> | ** <math>\langle x,x\rangle=0\iff x=0</math> | ||
+ | ==Terminology== | ||
+ | Given a vector space {{M|X}} over either {{M|\mathbb{R} }} or {{M|\mathbb{C} }}, and an inner product {{M|\langle\cdot,\cdot\rangle:X\times X\rightarrow F}} we call the space {{M|(X,\langle\cdot,\cdot\rangle)}} an: | ||
+ | * ''[[Inner product space]]'' (or ''i.p.s'' for short)<ref name="FA"/> or sometimes a | ||
+ | * ''pre-[[Hilbert space|hilbert]] space''<ref name="FA"/> | ||
==Properties== | ==Properties== | ||
− | + | {{Begin Inline Theorem}} | |
− | + | * '''The most important property by far is that: ''' {{M|\forall x\in X[\langle x,x\rangle\in\mathbb{R}_{\ge 0}]}} - that is '''{{M|\langle x,x\rangle}} is real''' | |
+ | {{Begin Inline Proof}} | ||
+ | '''Proof:''' | ||
+ | : Notice that we (by definition) have {{M|1=\langle x,x\rangle=\overline{\langle x,x\rangle} }}, so we must have: | ||
+ | :* {{M|1=a+bj=a-bj}} where {{M|1=a+bj:=\langle x,x\rangle}}, and by equating the real and imaginary parts we see immediately that we have: | ||
+ | :** {{M|1=b=-b}} and conclude {{M|1=b=0}}, that is there is no imaginary component. | ||
+ | To complete the proof note that by definition {{M|\langle x,x\rangle\ge 0}}. | ||
+ | |||
+ | Thus {{M|1=\langle x,x\rangle\in\mathbb{R}_{\ge 0} }} - as I claimed. | ||
+ | {{End Proof}}{{End Theorem}} | ||
+ | Notice that <math>\langle\cdot,\cdot\rangle</math> is also linear (ish) in its second argument as: | ||
+ | {{Begin Inline Theorem}} | ||
+ | * <math>\langle x,\lambda y+\mu z\rangle =\bar{\lambda}\langle x,y\rangle+\bar{\mu}\langle x,z\rangle</math> | ||
+ | {{Begin Inline Proof}} | ||
+ | :<math>\langle x,\lambda y+\mu z\rangle</math> | ||
+ | :: <math>=\overline{\langle \lambda y+\mu z, x\rangle}</math> | ||
+ | :: <math>=\overline{\lambda\langle y,x\rangle + \mu\langle z,x\rangle}</math> | ||
+ | :: <math>=\bar{\lambda}\overline{\langle y,x\rangle}+\bar{\mu}\overline{\langle z,x\rangle}</math> | ||
+ | : <math>=\bar{\lambda}\langle x,y\rangle+\bar{\mu}\langle x,z\rangle</math> | ||
+ | : As required. | ||
+ | {{End Proof}}{{End Theorem}} | ||
From this we may conclude the following: | From this we may conclude the following: | ||
* <math>\langle x,\lambda y\rangle = \bar{\lambda}\langle x,y\rangle</math> and | * <math>\langle x,\lambda y\rangle = \bar{\lambda}\langle x,y\rangle</math> and | ||
* <math>\langle x,y+z\rangle = \langle x,y\rangle + \langle x,z\rangle</math> | * <math>\langle x,y+z\rangle = \langle x,y\rangle + \langle x,z\rangle</math> | ||
This leads to the most general form: | This leads to the most general form: | ||
− | * {{M|1=\langle au+bv,cx+dy\rangle=a\langle u,cx+dy\rangle+b\langle v,cx+dy\rangle}}{{M|1= =a\overline{\langle cx+dy,u\rangle}+b\overline{\langle cx+dy,v\rangle} }}{{M|1= =a(\overline{c\langle x,u\rangle} + \overline{d\langle y,u\rangle})+b(\overline{c\langle x,v\rangle}+\overline{d\langle y,v\rangle})}}{{M|1= =a\overline{c}\langle u,x\rangle+a\overline{d}\langle u,y\rangle+b\overline{c}\langle v,x\rangle+b\overline{d}\langle v,y\rangle}} | + | {{Begin Inline Theorem}} |
+ | * {{M|1=\langle au+bv,cx+dy\rangle=a\overline{c}\langle u,x\rangle+a\overline{d}\langle u,y\rangle+b\overline{c}\langle v,x\rangle+b\overline{d}\langle v,y\rangle}} - which isn't worth remembering! | ||
+ | {{Begin Inline Proof}} | ||
+ | :'''Proof:''' | ||
+ | :{{M|1=\langle au+bv,cx+dy\rangle}} | ||
+ | ::{{M|1= =a\langle u,cx+dy\rangle+b\langle v,cx+dy\rangle}} | ||
+ | ::{{M|1= =a\overline{\langle cx+dy,u\rangle}+b\overline{\langle cx+dy,v\rangle} }} | ||
+ | ::{{M|1= =a(\overline{c\langle x,u\rangle} + \overline{d\langle y,u\rangle})+b(\overline{c\langle x,v\rangle}+\overline{d\langle y,v\rangle})}} | ||
+ | :{{M|1= =a\overline{c}\langle u,x\rangle+a\overline{d}\langle u,y\rangle+b\overline{c}\langle v,x\rangle+b\overline{d}\langle v,y\rangle}} | ||
+ | : As required | ||
+ | {{End Proof}}{{End Theorem}} | ||
+ | |||
+ | ==Notation== | ||
+ | Typically, {{M|\langle\cdot,\cdot\rangle}} is the notation for inner products, however I have seen some authors use {{M|\langle a,b\rangle}} to denote the [[Ordered pair|ordered pair]] containing {{M|a}} and {{M|b}}. Also, notably<ref name="FA"/> use {{M|(\cdot,\cdot)}} for an inner product (and {{M|\langle\cdot,\cdot\rangle}} for an ordered pair!) | ||
+ | |||
+ | ==Immediate theorems== | ||
+ | Here {{M|\langle\cdot,\cdot\rangle:X\times X\rightarrow \mathbb{C} }} is an ''inner product'' | ||
{{Begin Theorem}} | {{Begin Theorem}} | ||
− | + | '''Theorem: ''' if {{M|1=\forall x\in X[\langle x,y\rangle=0]}} then {{M|1=y=0}} | |
{{Begin Proof}} | {{Begin Proof}} | ||
− | + | : Suppose that {{M|y\ne 0}}, then {{M|\forall x\in X[\langle x,y\rangle=0]}} by hypothesis: | |
+ | :* {{M|1=\forall x\in X[\langle x,y\rangle =0]}} | ||
+ | : Specifically that means for {{M|y\in X}} we have {{M|1=\langle y,y\rangle=0}} | ||
+ | :* Of course by definition, {{M|\langle y,y\rangle\ge 0}} for {{M|\forall y\in X}}, and specifically | ||
+ | :** {{M|1=\langle x,x\rangle = 0\iff x=0}} | ||
+ | : So we have {{M|1=\langle y,y\rangle =0}} '''contradicting''' that {{M|y\ne 0}} | ||
+ | * We conclude that if {{M|1=\forall x\in X[\langle x,y\rangle=0]}} then we must have {{M|1=y=0}} | ||
+ | *: (As required) | ||
{{End Proof}}{{End Theorem}} | {{End Proof}}{{End Theorem}} | ||
− | + | ==Norm induced by== | |
− | == | + | * Given an ''inner product space'' {{M|(X,\langle\cdot,\cdot\rangle)}} we can define a [[Norm|norm]] as follows<ref name="FA"/>: |
+ | ** {{M|1=\forall x\in X}} the inner product induces the norm {{M|1=\Vert x\Vert:=\sqrt{\langle x,x\rangle} }} | ||
+ | {{Todo|Find out what this is called, eg compared to the [[Norm#Induced metric|metric induced by a norm]]}} | ||
+ | ==Prominent examples== | ||
* [[Vector dot product]] | * [[Vector dot product]] | ||
==See also== | ==See also== | ||
* [[Hilbert space]] | * [[Hilbert space]] | ||
+ | * [[Inner product examples]] | ||
+ | * [[Inequalities for inner products]] | ||
+ | * [[Perpendicular]] | ||
==References== | ==References== | ||
<references/> | <references/> | ||
− | + | {{Inner product and Hilbert spaces navbox}} | |
+ | {{Normed and Banach spaces navbox}} | ||
+ | {{Metric spaces navbox}} | ||
+ | {{Topology navbox}} | ||
{{Definition|Linear Algebra|Functional Analysis}} | {{Definition|Linear Algebra|Functional Analysis}} | ||
+ | [[Category:Exemplary pages]] |
Latest revision as of 12:57, 19 February 2016
Inner product | |
[ilmath]\langle\cdot,\cdot\rangle:V\times V\rightarrow\mathbb{F} [/ilmath] Where [ilmath]V[/ilmath] is a vector space over the field [ilmath]\mathbb{F} [/ilmath] [ilmath]\mathbb{F} [/ilmath] may be [ilmath]\mathbb{R} [/ilmath] or [ilmath]\mathbb{C} [/ilmath]. | |
relation to other topological spaces | |
---|---|
is a | |
contains all |
(none) |
Related objects | |
Induced norm |
For [ilmath]V[/ilmath] a vector space over [ilmath]\mathbb{R} [/ilmath] or [ilmath]\mathbb{C} [/ilmath] |
Induced metric |
For [ilmath]V[/ilmath] considered as a set |
Contents
Definition
Given a vector space, [ilmath](V,F)[/ilmath] (where [ilmath]F[/ilmath] is either [ilmath]\mathbb{R} [/ilmath] or [ilmath]\mathbb{C} [/ilmath]), an inner product[1][2][3] is a map:
- [math]\langle\cdot,\cdot\rangle:V\times V\rightarrow\mathbb{R}[/math] (or sometimes [math]\langle\cdot,\cdot\rangle:V\times V\rightarrow\mathbb{C}[/math])
Such that:
- [math]\langle x,y\rangle = \overline{\langle y, x\rangle}[/math] (where the bar denotes Complex conjugate)
- Or just [math]\langle x,y\rangle = \langle y,x\rangle[/math] if the inner product is into [ilmath]\mathbb{R} [/ilmath]
- [math]\langle\lambda x+\mu y,z\rangle = \lambda\langle y,z\rangle + \mu\langle x,z\rangle[/math] ( linearity in first argument )
- This may be alternatively stated as:
- [math]\langle\lambda x,y\rangle=\lambda\langle x,y\rangle[/math] and [math]\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle[/math]
- This may be alternatively stated as:
- [math]\langle x,x\rangle \ge 0[/math] but specifically:
- [math]\langle x,x\rangle=0\iff x=0[/math]
Terminology
Given a vector space [ilmath]X[/ilmath] over either [ilmath]\mathbb{R} [/ilmath] or [ilmath]\mathbb{C} [/ilmath], and an inner product [ilmath]\langle\cdot,\cdot\rangle:X\times X\rightarrow F[/ilmath] we call the space [ilmath](X,\langle\cdot,\cdot\rangle)[/ilmath] an:
- Inner product space (or i.p.s for short)[3] or sometimes a
- pre-hilbert space[3]
Properties
- The most important property by far is that: [ilmath]\forall x\in X[\langle x,x\rangle\in\mathbb{R}_{\ge 0}][/ilmath] - that is [ilmath]\langle x,x\rangle[/ilmath] is real
Proof:
- Notice that we (by definition) have [ilmath]\langle x,x\rangle=\overline{\langle x,x\rangle}[/ilmath], so we must have:
- [ilmath]a+bj=a-bj[/ilmath] where [ilmath]a+bj:=\langle x,x\rangle[/ilmath], and by equating the real and imaginary parts we see immediately that we have:
- [ilmath]b=-b[/ilmath] and conclude [ilmath]b=0[/ilmath], that is there is no imaginary component.
- [ilmath]a+bj=a-bj[/ilmath] where [ilmath]a+bj:=\langle x,x\rangle[/ilmath], and by equating the real and imaginary parts we see immediately that we have:
To complete the proof note that by definition [ilmath]\langle x,x\rangle\ge 0[/ilmath].
Thus [ilmath]\langle x,x\rangle\in\mathbb{R}_{\ge 0}[/ilmath] - as I claimed.
Notice that [math]\langle\cdot,\cdot\rangle[/math] is also linear (ish) in its second argument as:
- [math]\langle x,\lambda y+\mu z\rangle =\bar{\lambda}\langle x,y\rangle+\bar{\mu}\langle x,z\rangle[/math]
- [math]\langle x,\lambda y+\mu z\rangle[/math]
- [math]=\overline{\langle \lambda y+\mu z, x\rangle}[/math]
- [math]=\overline{\lambda\langle y,x\rangle + \mu\langle z,x\rangle}[/math]
- [math]=\bar{\lambda}\overline{\langle y,x\rangle}+\bar{\mu}\overline{\langle z,x\rangle}[/math]
- [math]=\bar{\lambda}\langle x,y\rangle+\bar{\mu}\langle x,z\rangle[/math]
- As required.
From this we may conclude the following:
- [math]\langle x,\lambda y\rangle = \bar{\lambda}\langle x,y\rangle[/math] and
- [math]\langle x,y+z\rangle = \langle x,y\rangle + \langle x,z\rangle[/math]
This leads to the most general form:
- [ilmath]\langle au+bv,cx+dy\rangle=a\overline{c}\langle u,x\rangle+a\overline{d}\langle u,y\rangle+b\overline{c}\langle v,x\rangle+b\overline{d}\langle v,y\rangle[/ilmath] - which isn't worth remembering!
- Proof:
- [ilmath]\langle au+bv,cx+dy\rangle[/ilmath]
- [ilmath]=a\langle u,cx+dy\rangle+b\langle v,cx+dy\rangle[/ilmath]
- [ilmath]=a\overline{\langle cx+dy,u\rangle}+b\overline{\langle cx+dy,v\rangle}[/ilmath]
- [ilmath]=a(\overline{c\langle x,u\rangle} + \overline{d\langle y,u\rangle})+b(\overline{c\langle x,v\rangle}+\overline{d\langle y,v\rangle})[/ilmath]
- [ilmath]=a\overline{c}\langle u,x\rangle+a\overline{d}\langle u,y\rangle+b\overline{c}\langle v,x\rangle+b\overline{d}\langle v,y\rangle[/ilmath]
- As required
Notation
Typically, [ilmath]\langle\cdot,\cdot\rangle[/ilmath] is the notation for inner products, however I have seen some authors use [ilmath]\langle a,b\rangle[/ilmath] to denote the ordered pair containing [ilmath]a[/ilmath] and [ilmath]b[/ilmath]. Also, notably[3] use [ilmath](\cdot,\cdot)[/ilmath] for an inner product (and [ilmath]\langle\cdot,\cdot\rangle[/ilmath] for an ordered pair!)
Immediate theorems
Here [ilmath]\langle\cdot,\cdot\rangle:X\times X\rightarrow \mathbb{C} [/ilmath] is an inner product
Theorem: if [ilmath]\forall x\in X[\langle x,y\rangle=0][/ilmath] then [ilmath]y=0[/ilmath]
- Suppose that [ilmath]y\ne 0[/ilmath], then by hypothesis:
- [ilmath]\forall x\in X[\langle x,y\rangle =0][/ilmath]
- Specifically that means for [ilmath]y\in X[/ilmath] we have [ilmath]\langle y,y\rangle=0[/ilmath]
- Of course by definition, [ilmath]\langle y,y\rangle\ge 0[/ilmath] for [ilmath]\forall y\in X[/ilmath], and specifically
- [ilmath]\langle x,x\rangle = 0\iff x=0[/ilmath]
- Of course by definition, [ilmath]\langle y,y\rangle\ge 0[/ilmath] for [ilmath]\forall y\in X[/ilmath], and specifically
- So we have [ilmath]\langle y,y\rangle =0[/ilmath] contradicting that [ilmath]y\ne 0[/ilmath]
- We conclude that if [ilmath]\forall x\in X[\langle x,y\rangle=0][/ilmath] then we must have [ilmath]y=0[/ilmath]
- (As required)
Norm induced by
- Given an inner product space [ilmath](X,\langle\cdot,\cdot\rangle)[/ilmath] we can define a norm as follows[3]:
- [ilmath]\forall x\in X[/ilmath] the inner product induces the norm [ilmath]\Vert x\Vert:=\sqrt{\langle x,x\rangle}[/ilmath]
TODO: Find out what this is called, eg compared to the metric induced by a norm
Prominent examples
See also
References
- ↑ http://en.wikipedia.org/w/index.php?title=Inner_product_space&oldid=651022885
- ↑ Functional Analysis I - Lecture Notes - Richard Sharp - Sep 2014
- ↑ 3.0 3.1 3.2 3.3 3.4 Functional Analysis - George Bachman and Lawrence Narici
|
|
|
|