Difference between revisions of "Inner product examples"
From Maths
(Created page with "==Of continuous functions== Here the space is {{M|\mathcal{C}_\mathbb{C}[a,b]}} - the continuous functions over the interval {{M|[a,b]}} that are complex va...") |
m (I had the wrong norm! What I wrote wasn't a norm (failed linearlity!)) |
||
Line 3: | Line 3: | ||
: (this is simpler then it sounds as for {{M|f\in\mathcal{C}_\mathbb{C}[a,b]}} we really have {{M|1=f(x)=f_r(x)+jf_i(x)}} where {{M|1=j:=\sqrt{-1} }}) | : (this is simpler then it sounds as for {{M|f\in\mathcal{C}_\mathbb{C}[a,b]}} we really have {{M|1=f(x)=f_r(x)+jf_i(x)}} where {{M|1=j:=\sqrt{-1} }}) | ||
{{Begin Inline Theorem}} | {{Begin Inline Theorem}} | ||
− | * For {{M|f,g\in\mathcal{C}_\mathbb{C}[a,b]}} we define {{MM|1=\langle f,g\rangle:= | + | * For {{M|f,g\in\mathcal{C}_\mathbb{C}[a,b]}} we define {{MM|1=\langle f,g\rangle:=\int_a^b{f(x)\overline{g(x)}dx} }} |
{{Begin Inline Proof}} | {{Begin Inline Proof}} | ||
'''Proof that this is an inner product:''' | '''Proof that this is an inner product:''' | ||
# We require that {{M|1=\langle f,g\rangle=\overline{\langle g,f\rangle} }} | # We require that {{M|1=\langle f,g\rangle=\overline{\langle g,f\rangle} }} | ||
#* Let us start with {{M|\overline{\langle g,f\rangle} }} and show it is equal to {{M|\langle f,g\rangle}} | #* Let us start with {{M|\overline{\langle g,f\rangle} }} and show it is equal to {{M|\langle f,g\rangle}} | ||
− | #** {{MM|1=\overline{\langle g,f\rangle}=\overline | + | #** {{MM|1=\overline{\langle g,f\rangle}=\overline{\int^b_a{g(x)\overline{f(x)}dx} } }} |
− | #**: {{MM|1= =\overline | + | #**: {{MM|1==\overline{\int_a^b(g_r(x)+jg_i(x))(f_r(x)-jf_i(x))dx} }} |
− | #**: {{MM|1= =\overline | + | #**: {{MM|1==\overline{\int_a^b{[f_r(x)g_r(x)+f_i(x)g_i(x)]dx}+j\int_a^b{[f_r(x)g_i(x)-f_i(x)g_r(x)]dx} } }} |
− | #**:: | + | #**:* '''Note:''' the terms are arranged alphabetically but otherwise it's a standard expansion |
− | #**: | + | #**: {{MM|1==\int_a^b{[f_r(x)g_r(x)+f_i(x)g_i(x)]dx}-j\int_a^b{[f_r(x)g_i(x)-f_i(x)g_r(x)]dx} }} |
− | #**: | + | #**: {{MM|1==\int_a^b{[f_r(x)g_r(x)+f_i(x)g_i(x)]dx}+j\int_a^b{[f_i(x)g_r(x)-f_r(x)g_i(x)]dx} }} |
− | #**: {{MM|1= =\ | + | #**: {{MM|1==\int_a^b{(f_r(x)+jf_i(x))(g_r(x)-jg_i(x))dx} }} |
− | #**: | + | #**: {{MM|1==\int_a^b{f(x)\overline{g(x)}dx} }} |
− | + | #** {{MM|1==\langle f,g\rangle}} | |
− | #* | + | #* As required, we have shown {{MM|1=\overline{\langle g,f\rangle}=\langle f,g\rangle}} |
− | #* | + | # Now we require that {{MM|1=\langle \alpha f+\beta g,h\rangle =\alpha\langle f,h\rangle+\beta\langle g,h\rangle}} |
− | + | #* As before, we will start with {{MM|1=\langle \alpha f+\beta g,h\rangle}} and show it is equal to {{MM|\alpha\langle f,h\rangle+\beta\langle g,h\rangle}} | |
− | # | + | #** {{MM|1=\langle \alpha f+\beta g,h\rangle=\int_a^b{(\alpha f(x)+\beta g(x))\overline{h(x)}dx} }} |
− | #** | + | #**: {{MM|1==\alpha\int_a^b{f(x)\overline{h(x)}dx}+\beta\int_a^b{g(x)\overline{h(x)}dx} }} |
− | #** | + | #** {{MM|1==\alpha\langle f,h\rangle+\beta\langle g,h\rangle}} |
− | #* | + | #* As required, we have shown {{MM|1=\langle \alpha f+\beta g,h\rangle =\alpha\langle f,h\rangle+\beta\langle g,h\rangle}} |
− | + | # Now we need to show that {{M|\forall f\in\mathcal{C}_\mathbb{C}[a,b]}} that {{M|\langle f,f\rangle\ge 0}} (and additionally {{MM|1=\langle f,f\rangle =0\iff f=0}} (that is {{M|f}} is the {{M|0}}-vector, the function that maps all to {{M|0}}) | |
− | #* | + | #* Let {{MM|f\in\mathcal{C}_\mathbb{C}[a,b]}} be given |
− | #** | + | #** {{MM|1=\langle f,f\rangle=\int_a^b{f(x)\overline{f(x)}dx} }} |
− | #**: {{MM|1= = | + | #**: {{MM|1==\int_a^b{(f_r(x)+jf_i(x))(f_r(x)-jf_i(x))dx} }} |
− | #**: {{MM|1= = | + | #**: {{MM|1==\int_a^b{[f_r(x)^2+f_i(x)^2]dx} }} |
− | #**: {{MM| | + | #**:* '''Note that:''' |
− | #** | + | #**:*# {{MM|f_r(x)^2\ge 0}} always |
− | #* | + | #**:*# {{MM|f_i(x)^2\ge 0}} always |
− | + | #**:* Thus the integral is {{M|\ge 0}} | |
+ | #** So {{MM|\int_a^b{[f_r(x)^2+f_i(x)^2]dx}\ge 0}} | ||
+ | #* As required, we have shown that {{MM|\langle f,f\rangle\ge 0}} always (as {{M|f}} was arbitrary) | ||
+ | * Now I must show that {{MM|1=\langle f,f\rangle =0\implies f=(:x\mapsto 0)}} | ||
+ | ** Use contrapositive to do this, and a bit of analysis | ||
+ | * Finally I must show that {{MM|1=f=(:x\mapsto 0)\implies \langle f,f\rangle=0}} which is the easiest part. | ||
+ | ** Just be bothered to write it | ||
+ | {{Todo|Finish this off}} | ||
{{End Proof}}{{End Theorem}} | {{End Proof}}{{End Theorem}} | ||
+ | |||
+ | [[Category:Functional Analysis]] |
Latest revision as of 16:16, 11 July 2015
Of continuous functions
Here the space is [ilmath]\mathcal{C}_\mathbb{C}[a,b][/ilmath] - the continuous functions over the interval [ilmath][a,b][/ilmath] that are complex valued.
- (this is simpler then it sounds as for [ilmath]f\in\mathcal{C}_\mathbb{C}[a,b][/ilmath] we really have [ilmath]f(x)=f_r(x)+jf_i(x)[/ilmath] where [ilmath]j:=\sqrt{-1}[/ilmath])
- For [ilmath]f,g\in\mathcal{C}_\mathbb{C}[a,b][/ilmath] we define [math]\langle f,g\rangle:=\int_a^b{f(x)\overline{g(x)}dx}[/math]
Proof that this is an inner product:
- We require that [ilmath]\langle f,g\rangle=\overline{\langle g,f\rangle}[/ilmath]
- Let us start with [ilmath]\overline{\langle g,f\rangle} [/ilmath] and show it is equal to [ilmath]\langle f,g\rangle[/ilmath]
- [math]\overline{\langle g,f\rangle}=\overline{\int^b_a{g(x)\overline{f(x)}dx} }[/math]
- [math]=\overline{\int_a^b(g_r(x)+jg_i(x))(f_r(x)-jf_i(x))dx}[/math]
- [math]=\overline{\int_a^b{[f_r(x)g_r(x)+f_i(x)g_i(x)]dx}+j\int_a^b{[f_r(x)g_i(x)-f_i(x)g_r(x)]dx} }[/math]
- Note: the terms are arranged alphabetically but otherwise it's a standard expansion
- [math]=\int_a^b{[f_r(x)g_r(x)+f_i(x)g_i(x)]dx}-j\int_a^b{[f_r(x)g_i(x)-f_i(x)g_r(x)]dx}[/math]
- [math]=\int_a^b{[f_r(x)g_r(x)+f_i(x)g_i(x)]dx}+j\int_a^b{[f_i(x)g_r(x)-f_r(x)g_i(x)]dx}[/math]
- [math]=\int_a^b{(f_r(x)+jf_i(x))(g_r(x)-jg_i(x))dx}[/math]
- [math]=\int_a^b{f(x)\overline{g(x)}dx}[/math]
- [math]=\langle f,g\rangle[/math]
- [math]\overline{\langle g,f\rangle}=\overline{\int^b_a{g(x)\overline{f(x)}dx} }[/math]
- As required, we have shown [math]\overline{\langle g,f\rangle}=\langle f,g\rangle[/math]
- Let us start with [ilmath]\overline{\langle g,f\rangle} [/ilmath] and show it is equal to [ilmath]\langle f,g\rangle[/ilmath]
- Now we require that [math]\langle \alpha f+\beta g,h\rangle =\alpha\langle f,h\rangle+\beta\langle g,h\rangle[/math]
- As before, we will start with [math]\langle \alpha f+\beta g,h\rangle[/math] and show it is equal to [math]\alpha\langle f,h\rangle+\beta\langle g,h\rangle[/math]
- [math]\langle \alpha f+\beta g,h\rangle=\int_a^b{(\alpha f(x)+\beta g(x))\overline{h(x)}dx}[/math]
- [math]=\alpha\int_a^b{f(x)\overline{h(x)}dx}+\beta\int_a^b{g(x)\overline{h(x)}dx}[/math]
- [math]=\alpha\langle f,h\rangle+\beta\langle g,h\rangle[/math]
- [math]\langle \alpha f+\beta g,h\rangle=\int_a^b{(\alpha f(x)+\beta g(x))\overline{h(x)}dx}[/math]
- As required, we have shown [math]\langle \alpha f+\beta g,h\rangle =\alpha\langle f,h\rangle+\beta\langle g,h\rangle[/math]
- As before, we will start with [math]\langle \alpha f+\beta g,h\rangle[/math] and show it is equal to [math]\alpha\langle f,h\rangle+\beta\langle g,h\rangle[/math]
- Now we need to show that [ilmath]\forall f\in\mathcal{C}_\mathbb{C}[a,b][/ilmath] that [ilmath]\langle f,f\rangle\ge 0[/ilmath] (and additionally [math]\langle f,f\rangle =0\iff f=0[/math] (that is [ilmath]f[/ilmath] is the [ilmath]0[/ilmath]-vector, the function that maps all to [ilmath]0[/ilmath])
- Let [math]f\in\mathcal{C}_\mathbb{C}[a,b][/math] be given
- [math]\langle f,f\rangle=\int_a^b{f(x)\overline{f(x)}dx}[/math]
- [math]=\int_a^b{(f_r(x)+jf_i(x))(f_r(x)-jf_i(x))dx}[/math]
- [math]=\int_a^b{[f_r(x)^2+f_i(x)^2]dx}[/math]
- Note that:
- [math]f_r(x)^2\ge 0[/math] always
- [math]f_i(x)^2\ge 0[/math] always
- Thus the integral is [ilmath]\ge 0[/ilmath]
- Note that:
- So [math]\int_a^b{[f_r(x)^2+f_i(x)^2]dx}\ge 0[/math]
- [math]\langle f,f\rangle=\int_a^b{f(x)\overline{f(x)}dx}[/math]
- As required, we have shown that [math]\langle f,f\rangle\ge 0[/math] always (as [ilmath]f[/ilmath] was arbitrary)
- Let [math]f\in\mathcal{C}_\mathbb{C}[a,b][/math] be given
- Now I must show that [math]\langle f,f\rangle =0\implies f=(:x\mapsto 0)[/math]
- Use contrapositive to do this, and a bit of analysis
- Finally I must show that [math]f=(:x\mapsto 0)\implies \langle f,f\rangle=0[/math] which is the easiest part.
- Just be bothered to write it
TODO: Finish this off