Difference between revisions of "Convergence of a sequence"

From Maths
Jump to: navigation, search
m (Redirected page to Convergence (sequence))
m (Redirected page to Limit (sequence))
 
Line 1: Line 1:
#REDIRECT [[Convergence (sequence)]]
+
#REDIRECT [[Limit (sequence)]]
  
 
{{Todo|preserve "interesting" example}}
 
{{Todo|preserve "interesting" example}}

Latest revision as of 13:30, 5 December 2015

Redirect to:


TODO: preserve "interesting" example


Interesting examples

[math]f_n(t)=t^n\rightarrow 0[/math] in [math]\|\cdot\|_{L^1}[/math]

Using the [math]\|\cdot\|_{L^1}[/math] norm stated here for convenience: [math]\|f\|_{L^p}=\left(\int^1_0|f(x)|^pdx\right)^\frac{1}{p}[/math] so [math]\|f\|_{L^1}=\int^1_0|f(x)|dx[/math]

We see that [math]\|f_n\|_{L^1}=\int^1_0x^ndx=\left[\frac{1}{n+1}x^{n+1}\right]^1_0=\frac{1}{n+1}[/math]

This clearly [math]\rightarrow 0[/math] - this is [math]0:[0,1]\rightarrow\mathbb{R}[/math] which of course has norm [ilmath]0[/ilmath], we think of this from the sequence [math](\|f_n-0\|_{L^1})^\infty_{n=1}\rightarrow 0\iff f_n\rightarrow 0[/math]