Difference between revisions of "Metric"

From Maths
Jump to: navigation, search
(Redirected page to Metric space)
 
m (Preparing to separate metric and metric space)
 
Line 1: Line 1:
 
#REDIRECT [[Metric space]]
 
#REDIRECT [[Metric space]]
 +
{{:Metric/Heading}}
 +
 +
__TOC__
 +
==Definition==
 
{{Todo|Separate metric and metric space}}
 
{{Todo|Separate metric and metric space}}
  
 
{{Definition|Topology|Metric Space}}
 
{{Definition|Topology|Metric Space}}

Latest revision as of 19:16, 25 January 2016

Redirect to:

Metric
[ilmath]d:X\times X\rightarrow\mathbb{R}_{\ge 0} [/ilmath]
Where [ilmath]X[/ilmath] is any set
relation to other topological spaces
is a
contains all
Related objects
Induced by norm
  • [ilmath]d_{\Vert\cdot\Vert}:V\times V\rightarrow\mathbb{R}_{\ge 0}[/ilmath]
  • [ilmath]d_{\Vert\cdot\Vert}:(x,y)\mapsto\Vert x-y\Vert[/ilmath]

For [ilmath]V[/ilmath] a vector space over [ilmath]\mathbb{R} [/ilmath] or [ilmath]\mathbb{C} [/ilmath]

Induced by inner product

An inner product induces a norm:

  • [ilmath]\Vert\cdot\Vert_{\langle\cdot,\cdot\rangle}:V\rightarrow\mathbb{R}_{\ge 0}[/ilmath]
  • [ilmath]\Vert\cdot\Vert_{\langle\cdot,\cdot\rangle}:x\mapsto\sqrt{\langle x,x\rangle}[/ilmath]

Which induces a metric:

  • [ilmath]d_{\langle\cdot,\cdot\rangle}:V\times V\rightarrow\mathbb{R}_{\ge 0}[/ilmath]
  • [ilmath]d_{\langle\cdot,\cdot\rangle}:(x,y)\mapsto\sqrt{\langle x-y,x-y\rangle}[/ilmath]
A metric is the most abstract notion of distance. It requires no structure on the underlying set.

Contents

Definition


TODO: Separate metric and metric space