Difference between revisions of "Notes:Basis for a topology/Attempt 2"
m (Saving work) |
m (Saving work) |
||
Line 22: | Line 22: | ||
==Facts== | ==Facts== | ||
# {{M|\mathcal{B} }} is a '''GBasis''' of {{M|X}} inducing {{M|(X,\mathcal{J}')}} {{M|\implies}} {{M|\mathcal{B} }} is a '''TBasis''' for the {{M|(X,\mathcal{J}')}} | # {{M|\mathcal{B} }} is a '''GBasis''' of {{M|X}} inducing {{M|(X,\mathcal{J}')}} {{M|\implies}} {{M|\mathcal{B} }} is a '''TBasis''' for the {{M|(X,\mathcal{J}')}} | ||
− | # {{Top.|X|J}} is a [[topological space]] with a '''TBasis''' {{M|\mathcal{B} }} {{M|\implies}} {{M|\mathcal{B} }} is a '''GBasis''' | + | # {{Top.|X|J}} is a [[topological space]] with a '''TBasis''' {{M|\mathcal{B} }} {{M|\implies}} {{M|\mathcal{B} }} is a '''GBasis''' |
+ | ==Result== | ||
+ | # '''Lemma: ''' {{M|\mathcal{B} }} is a '''TBasis''' of {{M|(X,\mathcal{J})}} {{M|\implies}} {{M|\mathcal{B} }} is a '''GBasis''' (inducing {{M|(X,\mathcal{J}')}}) {{M|\implies}} {{M|\mathcal{B} }} is a '''TBasis''' of {{M|(X,\mathcal{J}')}} | ||
+ | # '''Proposition: ''' {{M|1=\mathcal{J}=\mathcal{J'} }} (using the method of proof of fact 1 part 3 (the bit with the warning - as it isn't needed there)) | ||
+ | # '''Theorem: ''' {{M|\mathcal{B} }} is a '''TBasis''' of {{M|(X,\mathcal{J})}} {{M|\implies}} {{M|\mathcal{B} }} is a '''GBasis''' (inducing {{M|(X,\mathcal{J})}}) {{M|\implies}} {{M|\mathcal{B} }} is a '''TBasis''' of {{M|(X,\mathcal{J})}} | ||
+ | # '''Proposition: ''' {{M|\mathcal{B} }} is a '''Tbasis''' of {{M|(X,\mathcal{J})}} {{M|\iff}} {{M|\mathcal{B} }} is a '''GBasis''' inducing {{M|(X,\mathcal{J})}} | ||
==Proof of facts== | ==Proof of facts== | ||
# {{M|\mathcal{B} }} is a '''GBasis''' of {{M|X}} inducing {{M|(X,\mathcal{J}')}} {{M|\implies}} {{M|\mathcal{B} }} is a '''TBasis''' for the {{M|(X,\mathcal{J}')}} | # {{M|\mathcal{B} }} is a '''GBasis''' of {{M|X}} inducing {{M|(X,\mathcal{J}')}} {{M|\implies}} {{M|\mathcal{B} }} is a '''TBasis''' for the {{M|(X,\mathcal{J}')}} | ||
Line 54: | Line 59: | ||
#*#** We have shown {{M|1=\bigcup_{p\in U}B_p=U}} | #*#** We have shown {{M|1=\bigcup_{p\in U}B_p=U}} | ||
#*#* Since {{M|U\in\mathcal{J}'}} was arbitrary we have shown this for all {{M|U\in\mathcal{J}'}} | #*#* Since {{M|U\in\mathcal{J}'}} was arbitrary we have shown this for all {{M|U\in\mathcal{J}'}} | ||
− | #*# We | + | #*# We must now show that {{M|\mathcal{B} }} is a '''TBasis''' ''of {{M|(X,\mathcal{J}')}} specifically''. {{Warning|No we do not, but what I did here is useful in proving something else later}} |
+ | #*#* Recall that, by definition of {{M|\mathcal{B} }} being a '''GBasis''': | ||
+ | #*#** {{M|1=\forall U\in\mathcal{P}(X)\big[U\in\mathcal{J}'\iff\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)\big]}} | ||
+ | #*#* Recall that, by definition of {{M|\mathcal{B} }} being a '''TBasis''' we can talk about open sets as: | ||
+ | #*#** {{M|1=\forall U\in\mathcal{P}(X)\big[U\in\mathcal{J}\iff\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)\big]}} (for the topology it is a '''TBasis''' of, {{M|\mathcal{J} }}) | ||
+ | #*#* We wish to show that {{M|1=\mathcal{J}'=\mathcal{J} }} | ||
+ | #*#** Let {{M|U\in\mathcal{P}(X)}} be given. | ||
+ | #*#*** Then by definition of {{M|\mathcal{B} }} being a '''GBasis''': | ||
+ | #*#**** {{M|1=U\in\mathcal{J}'\iff\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)}} | ||
+ | #*#*** But by definition of {{M|\mathcal{B} }} being a '''TBasis''' (of {{M|\mathcal{J} }}): | ||
+ | #*#**** {{M|1=\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)\iff U\in\mathcal{J} }} | ||
+ | #*#*** Combining these we see: | ||
+ | #*#**** {{M|1=U\in\mathcal{J}'\iff\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)\iff U\in\mathcal{J} }} | ||
+ | #*#*** Thus: {{M|1=U\in\mathcal{J}'\iff U\in\mathcal{J} }} | ||
+ | #*#** We have shown {{M|1=\forall U\in\mathcal{P}(X)[U\in\mathcal{J}'\iff U\in\mathcal{J}]}} | ||
+ | #*#** For any [[topology]] on {{M|X}}, {{M|\mathcal{K} }} we require: {{M|\mathcal{K}\subseteq\mathcal{P}(X)}}. So, | ||
+ | #*#*** we know: {{M|1=\forall V\in\mathcal{J}[V\in\mathcal{P}(X)]}} (from the [[implies-subset relation]]), and {{M|\forall V'\in\mathcal{J}'[V'\in\mathcal{P}(X)]}} | ||
+ | #*#** We want to show {{M|1=\mathcal{J}=\mathcal{J}'}} remember, we will do this by showing {{M|\mathcal{J}\subseteq\mathcal{J}'}} and {{M|\mathcal{J}'\subseteq\mathcal{J} }} | ||
+ | #*#**# Showing {{M|\mathcal{J}\subseteq\mathcal{J}'}}, using the [[implies-subset relation]] this is the same as showing {{M|\forall V\in\mathcal{J}[V\in\mathcal{J}']}} | ||
+ | #*#**#* Let {{M|V\in\mathcal{J} }} be given. | ||
+ | #*#**#** Then {{M|V\in\mathcal{P}(X)}} | ||
+ | #*#**#** But we know: {{M|\forall W\in\mathcal{P}(X)[W\in\mathcal{J}\iff W\in\mathcal{J}']}}, so we can apply this using {{M|V}}. | ||
+ | #*#**#*** We see {{M|V\in\mathcal{J}\iff V\in\mathcal{J}'}} | ||
+ | #*#**#**** But by definition {{M|V\in\mathcal{J} }} ! | ||
+ | #*#**#*** So {{M|V\in\mathcal{J}'}} | ||
+ | #*#**#* Since {{M|V\in\mathcal{J} }} was arbitrary we have shown that for all such {{M|V}} that {{M|V\in\mathcal{J}'}} | ||
+ | #*#**# Showing {{M|\mathcal{J}'\subseteq\mathcal{J} }} is almost exactly the same, so rather than copy and paste and change a few symbols, I'll just say "same as above". | ||
+ | #*#* We have shown that {{M|1=\mathcal{J}=\mathcal{J}'}} | ||
#* This completes the proof. | #* This completes the proof. | ||
+ | #* We have shown that if {{M|\mathcal{B} }} is a '''GBasis''' that not only is it a '''TBasis''' | ||
==Notes== | ==Notes== | ||
<references group="Note"/> | <references group="Note"/> |
Latest revision as of 10:14, 8 August 2016
Overview
Last time I tried to merge the definitions, which got very confusing! This time I shall treat them as separate things and go from there.
Definitions
Here we will use GBasis for a generated topology (by a basis) and TBasis for a basis of an existing topology.
GBasis
Let [ilmath]X[/ilmath] be a set and [ilmath]\mathcal{B}\subseteq\mathcal{P}(X)[/ilmath] be a collection of subsets of [ilmath]X[/ilmath]. Then we say:
- [ilmath]\mathcal{B} [/ilmath] is a GBasis if it satisfies the following 2 conditions:
- [ilmath]\forall x\in X\exists B\in\mathcal{B}[x\in B][/ilmath] - every element of [ilmath]X[/ilmath] is contained in some GBasis set.
- [ilmath]\forall B_1,B_2\in\mathcal{B}\forall x\ B_1\cap B_2\exists B_3\in\mathcal{B}[B_1\cap B_2\ne\emptyset\implies(x\in B_3\subseteq B_1\cap B_2)][/ilmath][Note 1][Note 2]
Then [ilmath]\mathcal{B} [/ilmath] induces a topology on [ilmath]X[/ilmath].
Let [ilmath]\mathcal{J}_\text{Induced} [/ilmath] denote this topology, then:
- [ilmath]\forall U\in\mathcal{P}(X)\big[U\in\mathcal{J}_\text{Induced}\iff\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)\big][/ilmath]
TBasis
Suppose [ilmath](X,\mathcal{ J })[/ilmath] is a topological space and [ilmath]\mathcal{B}\subseteq\mathcal{P}(X)[/ilmath] is some collection of subsets of [ilmath]X[/ilmath]. We say:
- [ilmath]\mathcal{B} [/ilmath] is a TBasis if it satisfies both of the following:
- [ilmath]\forall B\in\mathcal{B}[B\in\mathcal{J}][/ilmath] - all the basis elements are themselves open.
- [ilmath]\forall U\in\mathcal{J}\exists\{B_\alpha\}_{\alpha\in I}[\bigcup_{\alpha\in I}B_\alpha=U][/ilmath]
If we have a TBasis for a topological space then we may talk about its open sets differently:
- [ilmath]\forall U\in\mathcal{P}(X)\big[U\in\mathcal{J}\iff\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)\big][/ilmath]
Facts
- [ilmath]\mathcal{B} [/ilmath] is a GBasis of [ilmath]X[/ilmath] inducing [ilmath](X,\mathcal{J}')[/ilmath] [ilmath]\implies[/ilmath] [ilmath]\mathcal{B} [/ilmath] is a TBasis for the [ilmath](X,\mathcal{J}')[/ilmath]
- [ilmath](X,\mathcal{ J })[/ilmath] is a topological space with a TBasis [ilmath]\mathcal{B} [/ilmath] [ilmath]\implies[/ilmath] [ilmath]\mathcal{B} [/ilmath] is a GBasis
Result
- Lemma: [ilmath]\mathcal{B} [/ilmath] is a TBasis of [ilmath](X,\mathcal{J})[/ilmath] [ilmath]\implies[/ilmath] [ilmath]\mathcal{B} [/ilmath] is a GBasis (inducing [ilmath](X,\mathcal{J}')[/ilmath]) [ilmath]\implies[/ilmath] [ilmath]\mathcal{B} [/ilmath] is a TBasis of [ilmath](X,\mathcal{J}')[/ilmath]
- Proposition: [ilmath]\mathcal{J}=\mathcal{J'}[/ilmath] (using the method of proof of fact 1 part 3 (the bit with the warning - as it isn't needed there))
- Theorem: [ilmath]\mathcal{B} [/ilmath] is a TBasis of [ilmath](X,\mathcal{J})[/ilmath] [ilmath]\implies[/ilmath] [ilmath]\mathcal{B} [/ilmath] is a GBasis (inducing [ilmath](X,\mathcal{J})[/ilmath]) [ilmath]\implies[/ilmath] [ilmath]\mathcal{B} [/ilmath] is a TBasis of [ilmath](X,\mathcal{J})[/ilmath]
- Proposition: [ilmath]\mathcal{B} [/ilmath] is a Tbasis of [ilmath](X,\mathcal{J})[/ilmath] [ilmath]\iff[/ilmath] [ilmath]\mathcal{B} [/ilmath] is a GBasis inducing [ilmath](X,\mathcal{J})[/ilmath]
Proof of facts
- [ilmath]\mathcal{B} [/ilmath] is a GBasis of [ilmath]X[/ilmath] inducing [ilmath](X,\mathcal{J}')[/ilmath] [ilmath]\implies[/ilmath] [ilmath]\mathcal{B} [/ilmath] is a TBasis for the [ilmath](X,\mathcal{J}')[/ilmath]
- Let [ilmath]\mathcal{B} [/ilmath] be a GBasis, suppose it generates the topological space [ilmath](X,\mathcal{J}')[/ilmath], we will show it's also a TBasis of [ilmath](X,\mathcal{J}')[/ilmath]
- [ilmath]\forall B\in\mathcal{B}[B\in\mathcal{J}'][/ilmath] must be shown
- Let [ilmath]B\in\mathcal{B} [/ilmath] be given.
- Recall [ilmath]U\in\mathcal{J}'\iff\forall x\in U\exists B'\in\mathcal{B}[x\in B'\wedge B'\subseteq U][/ilmath]
- Let [ilmath]x\in B[/ilmath] be given.
- Choose [ilmath]B':=B[/ilmath]
- [ilmath]x\in B'[/ilmath] by definition, as [ilmath]x\in B'=B[/ilmath] and
- we have [ilmath]B\subseteq B[/ilmath], by the implies-subset relation, if and only if [ilmath]\forall p\in B[p\in B][/ilmath] which is trivial.
- Choose [ilmath]B':=B[/ilmath]
- Thus [ilmath]B\in\mathcal{J}'[/ilmath]
- Since [ilmath]B\in\mathcal{B} [/ilmath] was arbitrary we have shown [ilmath]\forall B\in\mathcal{B}[B\in\mathcal{J}'][/ilmath]
- Let [ilmath]B\in\mathcal{B} [/ilmath] be given.
- [ilmath]\forall U\in\mathcal{J}'\exists\{B_\alpha\}_{\alpha\in I}[\bigcup_{\alpha\in I}B_\alpha=U][/ilmath] must be shown
- Let [ilmath]U\in\mathcal{J}'[/ilmath] be given.
- Then, as [ilmath]\mathcal{B} [/ilmath] is a GBasis, by definition of the open sets generated: [ilmath]\forall x\in X\exists B\in\mathcal{B}[x\in B\wedge B\subseteq U][/ilmath]
- Let [ilmath]p\in U[/ilmath] be given
- Define [ilmath]B_p[/ilmath] to be the [ilmath]B[/ilmath] that exists such that [ilmath]p\in B_p[/ilmath] and [ilmath]B_p\subseteq U[/ilmath]
- We now have an .... thing, like a sequence but arbitrary, [ilmath](B_p)_{p\in U} [/ilmath] or [ilmath]\{B_p\}_{p\in U} [/ilmath] - I need to come down on a notation for this - such that:
- [ilmath]\forall B_p\in(B_p)_{p\in U}[p\in B_p\wedge B_p\subseteq U][/ilmath]
- We must now show [ilmath]\bigcup_{p\in U}B_p=U[/ilmath], we can do this by showing [ilmath]\bigcup_{p\in U}B_p\subseteq U[/ilmath] and [ilmath]\bigcup_{p\in U}B_p\supseteq U[/ilmath]
- [ilmath]\bigcup_{p\in U}B_p\subseteq U[/ilmath]
- Using the union of subsets is a subset of the union we see:
- [ilmath]\bigcup_{p\in U}B_p\subseteq U][/ilmath]
- Using the union of subsets is a subset of the union we see:
- [ilmath]U\subseteq\bigcup_{p\in U}B_p[/ilmath]
- Using the implies-subset relation we see: [ilmath]U\subseteq\bigcup_{p\in U}B_p\iff\forall x\in U[x\in\bigcup_{p\in U}B_p][/ilmath], we will show the RHS instead.
- Let [ilmath]x\in U[/ilmath] be given
- Recall, by definition of union, [ilmath]x\in\bigcup_{p\in U}B_p\iff\exists q\in U[x\in B_q][/ilmath]
- Choose [ilmath]q:=x[/ilmath] then we have [ilmath]x\in B_x[/ilmath] (as [ilmath]p\in B_p[/ilmath] is one of the defining conditions of choosing each [ilmath]B_p[/ilmath]!)
- Recall, by definition of union, [ilmath]x\in\bigcup_{p\in U}B_p\iff\exists q\in U[x\in B_q][/ilmath]
- Let [ilmath]x\in U[/ilmath] be given
- Thus [ilmath]U\subseteq\bigcup_{p\in U}B_p[/ilmath]
- Using the implies-subset relation we see: [ilmath]U\subseteq\bigcup_{p\in U}B_p\iff\forall x\in U[x\in\bigcup_{p\in U}B_p][/ilmath], we will show the RHS instead.
- [ilmath]\bigcup_{p\in U}B_p\subseteq U[/ilmath]
- We have shown [ilmath]\bigcup_{p\in U}B_p=U[/ilmath]
- Since [ilmath]U\in\mathcal{J}'[/ilmath] was arbitrary we have shown this for all [ilmath]U\in\mathcal{J}'[/ilmath]
- Let [ilmath]U\in\mathcal{J}'[/ilmath] be given.
- We must now show that [ilmath]\mathcal{B} [/ilmath] is a TBasis of [ilmath](X,\mathcal{J}')[/ilmath] specifically. Warning:No we do not, but what I did here is useful in proving something else later
- Recall that, by definition of [ilmath]\mathcal{B} [/ilmath] being a GBasis:
- [ilmath]\forall U\in\mathcal{P}(X)\big[U\in\mathcal{J}'\iff\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)\big][/ilmath]
- Recall that, by definition of [ilmath]\mathcal{B} [/ilmath] being a TBasis we can talk about open sets as:
- [ilmath]\forall U\in\mathcal{P}(X)\big[U\in\mathcal{J}\iff\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)\big][/ilmath] (for the topology it is a TBasis of, [ilmath]\mathcal{J} [/ilmath])
- We wish to show that [ilmath]\mathcal{J}'=\mathcal{J}[/ilmath]
- Let [ilmath]U\in\mathcal{P}(X)[/ilmath] be given.
- Then by definition of [ilmath]\mathcal{B} [/ilmath] being a GBasis:
- [ilmath]U\in\mathcal{J}'\iff\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)[/ilmath]
- But by definition of [ilmath]\mathcal{B} [/ilmath] being a TBasis (of [ilmath]\mathcal{J} [/ilmath]):
- [ilmath]\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)\iff U\in\mathcal{J}[/ilmath]
- Combining these we see:
- [ilmath]U\in\mathcal{J}'\iff\big(\forall p\in U\exists B\in\mathcal{B}[p\in B\wedge B\subseteq U]\big)\iff U\in\mathcal{J}[/ilmath]
- Thus: [ilmath]U\in\mathcal{J}'\iff U\in\mathcal{J}[/ilmath]
- Then by definition of [ilmath]\mathcal{B} [/ilmath] being a GBasis:
- We have shown [ilmath]\forall U\in\mathcal{P}(X)[U\in\mathcal{J}'\iff U\in\mathcal{J}][/ilmath]
- For any topology on [ilmath]X[/ilmath], [ilmath]\mathcal{K} [/ilmath] we require: [ilmath]\mathcal{K}\subseteq\mathcal{P}(X)[/ilmath]. So,
- we know: [ilmath]\forall V\in\mathcal{J}[V\in\mathcal{P}(X)][/ilmath] (from the implies-subset relation), and [ilmath]\forall V'\in\mathcal{J}'[V'\in\mathcal{P}(X)][/ilmath]
- We want to show [ilmath]\mathcal{J}=\mathcal{J}'[/ilmath] remember, we will do this by showing [ilmath]\mathcal{J}\subseteq\mathcal{J}'[/ilmath] and [ilmath]\mathcal{J}'\subseteq\mathcal{J} [/ilmath]
- Showing [ilmath]\mathcal{J}\subseteq\mathcal{J}'[/ilmath], using the implies-subset relation this is the same as showing [ilmath]\forall V\in\mathcal{J}[V\in\mathcal{J}'][/ilmath]
- Let [ilmath]V\in\mathcal{J} [/ilmath] be given.
- Then [ilmath]V\in\mathcal{P}(X)[/ilmath]
- But we know: [ilmath]\forall W\in\mathcal{P}(X)[W\in\mathcal{J}\iff W\in\mathcal{J}'][/ilmath], so we can apply this using [ilmath]V[/ilmath].
- We see [ilmath]V\in\mathcal{J}\iff V\in\mathcal{J}'[/ilmath]
- But by definition [ilmath]V\in\mathcal{J} [/ilmath] !
- So [ilmath]V\in\mathcal{J}'[/ilmath]
- We see [ilmath]V\in\mathcal{J}\iff V\in\mathcal{J}'[/ilmath]
- Since [ilmath]V\in\mathcal{J} [/ilmath] was arbitrary we have shown that for all such [ilmath]V[/ilmath] that [ilmath]V\in\mathcal{J}'[/ilmath]
- Let [ilmath]V\in\mathcal{J} [/ilmath] be given.
- Showing [ilmath]\mathcal{J}'\subseteq\mathcal{J} [/ilmath] is almost exactly the same, so rather than copy and paste and change a few symbols, I'll just say "same as above".
- Showing [ilmath]\mathcal{J}\subseteq\mathcal{J}'[/ilmath], using the implies-subset relation this is the same as showing [ilmath]\forall V\in\mathcal{J}[V\in\mathcal{J}'][/ilmath]
- Let [ilmath]U\in\mathcal{P}(X)[/ilmath] be given.
- We have shown that [ilmath]\mathcal{J}=\mathcal{J}'[/ilmath]
- Recall that, by definition of [ilmath]\mathcal{B} [/ilmath] being a GBasis:
- [ilmath]\forall B\in\mathcal{B}[B\in\mathcal{J}'][/ilmath] must be shown
- This completes the proof.
- We have shown that if [ilmath]\mathcal{B} [/ilmath] is a GBasis that not only is it a TBasis
- Let [ilmath]\mathcal{B} [/ilmath] be a GBasis, suppose it generates the topological space [ilmath](X,\mathcal{J}')[/ilmath], we will show it's also a TBasis of [ilmath](X,\mathcal{J}')[/ilmath]
Notes
- ↑ Note that [ilmath]x\in B_3\subseteq B_1\cap B_2[/ilmath] is short for:
- [ilmath]x\in B_3\wedge B_3\subseteq B_1\cap B_2[/ilmath]
- ↑ Note that if [ilmath]B_1\cap B_2[/ilmath] is empty (they do not intersect) then the logical implication is true regardless of the RHS of the [ilmath]\implies[/ilmath]} sign, so we do not care if we have [ilmath]x\in B_3\wedge B_3\subseteq B_1\cap B_2[/ilmath]! Pick any [ilmath]x\in X[/ilmath] and aany [ilmath]B_3\in\mathcal{B} [/ilmath]!