Difference between revisions of "Notes:Homology"
From Maths
(→Computing the homology groups:: Buggered up computation, left it for now, added 1st homology group) |
m (Adding links to new examples) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | * [[/Real projective plane]] | ||
+ | * [[/Torus]] | ||
==Definitions== | ==Definitions== | ||
# '''Boundary operator: ''' {{M|\partial_n:C_n\rightarrow C_{n-1} }} given by {{M|1=\partial_n:[a_0,\ldots a_n]\mapsto\sum^n_{i=0}(-1)^i[a_0,\ldots,\hat{a_i},\ldots,a_n]}} | # '''Boundary operator: ''' {{M|\partial_n:C_n\rightarrow C_{n-1} }} given by {{M|1=\partial_n:[a_0,\ldots a_n]\mapsto\sum^n_{i=0}(-1)^i[a_0,\ldots,\hat{a_i},\ldots,a_n]}} | ||
Line 30: | Line 32: | ||
*# {{M|1=\partial_1(d)=x-z}} also | *# {{M|1=\partial_1(d)=x-z}} also | ||
* We extend this to a [[group homomorphism]] by defining: | * We extend this to a [[group homomorphism]] by defining: | ||
− | ** {{M|1=\begin{array}{rcl}\partial_1(\alpha a+\beta b+\gamma c+\delta d)&:=&\alpha\partial_1(a)+\beta\partial_1(b)+\gamma\partial_1(c)+\delta\partial_1(d)\\ & =& \alpha(y-x)+\beta(z-y)+(\gamma+\delta)(x-z)\\<!-- | + | ** <span style="font-size:0.8em;">{{M|1=\begin{array}{rcl}\partial_1(\alpha a+\beta b+\gamma c+\delta d)&:=&\alpha\partial_1(a)+\beta\partial_1(b)+\gamma\partial_1(c)+\delta\partial_1(d)\\ & =& \alpha(y-x)+\beta(z-y)+(\gamma+\delta)(x-z)\\<!-- |
− | -->& = &(-\alpha+\gamma+\delta)x+(\alpha-\beta)y+(-\gamma-\delta)z\end{array} }}, we may write: <span style="font-size:0.8em;">{{M|1=\begin{pmatrix}x\\y\\z\end{pmatrix}=\alpha\left(\begin{array}{c}-1\\ 1 \\ 0\end{array}\right)+\beta\begin{pmatrix}0\\-1\\1\end{pmatrix}+\gamma\begin{pmatrix} | + | -->& = &(-\alpha+\gamma+\delta)x+(\alpha-\beta)y+(\beta-\gamma-\delta)z\end{array} }}</span>, we may write: <span style="font-size:0.8em;">{{M|1=\begin{pmatrix}x\\y\\z\end{pmatrix}=\alpha\left(\begin{array}{c}-1\\ 1 \\ 0\end{array}\right)+\beta\begin{pmatrix}0\\-1\\1\end{pmatrix}+\gamma\begin{pmatrix}1\\0\\-1\end{pmatrix}+\delta\begin{pmatrix}1\\0\\-1\end{pmatrix}=\begin{pmatrix}-1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1\end{pmatrix}\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix} }}</span> |
** Recall also the [[rank plus nullity theorem]]: | ** Recall also the [[rank plus nullity theorem]]: | ||
*** For {{M|f\in\mathcal{L}(V,W)}} we have {{M|1=\text{Dim}(\text{Ker}(f))+\text{Dim}(\text{Im}(f))=\text{Dim}(V)}} | *** For {{M|f\in\mathcal{L}(V,W)}} we have {{M|1=\text{Dim}(\text{Ker}(f))+\text{Dim}(\text{Im}(f))=\text{Dim}(V)}} | ||
Line 42: | Line 44: | ||
*#* It is clear from the [[rank plus nullity theorem]] mentioned above that we should have {{M|1=\text{Dim}(\text{Ker}(\partial_1))+\text{Dim}(\text{Im}(\partial_1))=4}} and we'll need to compute the kernel of {{M|\partial_1}} for {{M|H_1}} anyway. | *#* It is clear from the [[rank plus nullity theorem]] mentioned above that we should have {{M|1=\text{Dim}(\text{Ker}(\partial_1))+\text{Dim}(\text{Im}(\partial_1))=4}} and we'll need to compute the kernel of {{M|\partial_1}} for {{M|H_1}} anyway. | ||
*#** See ''computing the kernel of {{M|\partial_1}}'' below | *#** See ''computing the kernel of {{M|\partial_1}}'' below | ||
+ | *#** The dimension of the kernel is {{M|2}} so the dimension of the image is {{M|2}} also! | ||
+ | *#** {{M|1=H_0=\langle x,y,z\rangle/\langle y-x, z-y\rangle\ (\cong\mathbb{Z}\ ?)}} (although surely there are other choices for {{M|1=\langle y-x, z-y\rangle}}) | ||
* {{M|1=H_1:=Z_1/B_1:=\text{Ker}(\partial_1)/\text{Im}(\partial 2)}} | * {{M|1=H_1:=Z_1/B_1:=\text{Ker}(\partial_1)/\text{Im}(\partial 2)}} | ||
*# Computing {{M|\text{Ker}(\partial_1)}} has already been done below | *# Computing {{M|\text{Ker}(\partial_1)}} has already been done below | ||
*# Computing {{M|\text{Im}(\partial_2)}} is easy, it's {{M|0}} - the [[trivial group]] | *# Computing {{M|\text{Im}(\partial_2)}} is easy, it's {{M|0}} - the [[trivial group]] | ||
** Thus: | ** Thus: | ||
− | *** {{M|1=H_1\cong\text{Ker}(\partial_1)}} | + | *** {{M|1=H_1\cong\text{Ker}(\partial_1)=\langle a+b+c,a+b+d\rangle\cong\mathbb{Z}^2}} |
===Computing the kernel of {{M|\partial_1}}=== | ===Computing the kernel of {{M|\partial_1}}=== | ||
To do this we wish to solve: | To do this we wish to solve: | ||
− | * {{M|1=\begin{pmatrix}-1 & 0 & | + | * {{M|1=\begin{pmatrix}-1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1\end{pmatrix}\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix} }}, which basically amounts to [[rrefing]] {{M|1=\begin{pmatrix}-1 & 0 & 1 & 1 & 0\\ 1 & -1 & 0 & 0 & 0\\ 0 & 1 & -1 & -1 & 0\end{pmatrix} }} giving us {{M|1=\begin{pmatrix}1 & 0 & -1 & -1 & 0\\ 0 & 1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 &0\end{pmatrix} }} |
− | ** | + | ** Yielding: {{M|1=\alpha=\gamma+\delta}} and {{M|1=\beta=\gamma+\delta}}. Let {{M|1=\gamma:=s}} and {{M|\delta:=t}} then: |
+ | *** {{M|1=\alpha=s+t}} and {{M|1=\beta=s+t}}, vectorially: | ||
+ | *** If {{M|1=\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}=s\begin{pmatrix}1\\1\\1\\0 \end{pmatrix}+t\begin{pmatrix}1\\1\\0\\1 \end{pmatrix} }} then {{M|\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}\in\text{Ker}(\partial_1)}} | ||
+ | **** This makes perfect sense, it means (''informally'') {{M|s}} times through {{M|(a\rightarrow b\rightarrow c)}} and {{M|t}} times through {{M|a\rightarrow b\rightarrow d}}, which goes {{M|s+t}} times through both {{M|a}} and {{M|b}} all together! | ||
+ | *** Clearly the dimension is 2. | ||
+ | ===Computing the image of {{M|\partial_1}}=== | ||
+ | Take the following system: | ||
+ | * {{M|1=\begin{pmatrix}-1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1\end{pmatrix}\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}=\begin{pmatrix}x\\y\\z\end{pmatrix} }} | ||
+ | Looking at it we see that the first column add the second column is minus the third, so the colspan is clearly 3. We can write this as the subset of {{M|\mathbb{Z}^3}} spanned by: | ||
+ | * {{M|\langle y-x,z-y\rangle}} | ||
+ | ==Dealing with generated spaces== | ||
+ | [[File:NonSurjectiveInvertable"Lin"Map.JPG|thumb|Here we see the space {{M|\langle (1,2),(2,1)\rangle}} "inside" {{M|\mathbb{Z}^2}}, clearly it is both not, and sort of is "isomorphic" to {{M|\mathbb{Z}^2}}. It isn't as there are holes, it is though as it ''itself'' is a space of dimension 2...]] | ||
+ | |||
+ | I don't like being so informal, hence "rings and modules" |
Latest revision as of 07:30, 15 October 2016
Contents
Definitions
- Boundary operator: [ilmath]\partial_n:C_n\rightarrow C_{n-1} [/ilmath] given by [ilmath]\partial_n:[a_0,\ldots a_n]\mapsto\sum^n_{i=0}(-1)^i[a_0,\ldots,\hat{a_i},\ldots,a_n][/ilmath]
- [ilmath]\mathbf{n} [/ilmath]-cycles: [ilmath]Z_n[/ilmath] (a cycle is defined to have boundary 0, thus [ilmath]Z_n=\text{Ker}(\partial_n)[/ilmath] - todo - discussion)
- [ilmath]\mathbf{n} [/ilmath]-boundaries: [ilmath]B_n[/ilmath] (the image of [ilmath]\partial_{n+1} [/ilmath] - all boundaries)
- Claim: [ilmath]B_n\le Z_n[/ilmath] (that is: [ilmath]B_n[/ilmath] is a subgroup of [ilmath]Z_n[/ilmath])
- [ilmath]\mathbf{n} [/ilmath]th homology group: [ilmath]H_n:=Z_n/B_n[/ilmath]
Examples 1: [ilmath]G_1[/ilmath]
Chain complex: [ilmath]\xymatrix{
0 \ar[r]^{\partial_2} & C_1 \ar[r]^{\partial_1} \ar@2{->}[d] & C_0 \ar[r]^{\partial_0=0} \ar@2{->}[d] & 0 \\
& {\langle a,b,c,d\rangle\cong\mathbb{Z}^4} & {\langle x,y,z\rangle\cong\mathbb{Z}^3}
}[/ilmath]
[ilmath]\partial_1:C_1\rightarrow C_0[/ilmath] morphism:
- We have:
- [ilmath]\partial_1(a)= y-x[/ilmath],
- [ilmath]\partial_1(b)= z-y[/ilmath],
- [ilmath]\partial_1(c)= x-z[/ilmath] and
- [ilmath]\partial_1(d)=x-z[/ilmath] also
- We extend this to a group homomorphism by defining:
- [ilmath]\begin{array}{rcl}\partial_1(\alpha a+\beta b+\gamma c+\delta d)&:=&\alpha\partial_1(a)+\beta\partial_1(b)+\gamma\partial_1(c)+\delta\partial_1(d)\\ & =& \alpha(y-x)+\beta(z-y)+(\gamma+\delta)(x-z)\\& = &(-\alpha+\gamma+\delta)x+(\alpha-\beta)y+(\beta-\gamma-\delta)z\end{array}[/ilmath], we may write: [ilmath]\begin{pmatrix}x\\y\\z\end{pmatrix}=\alpha\left(\begin{array}{c}-1\\ 1 \\ 0\end{array}\right)+\beta\begin{pmatrix}0\\-1\\1\end{pmatrix}+\gamma\begin{pmatrix}1\\0\\-1\end{pmatrix}+\delta\begin{pmatrix}1\\0\\-1\end{pmatrix}=\begin{pmatrix}-1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1\end{pmatrix}\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}[/ilmath]
- Recall also the rank plus nullity theorem:
- For [ilmath]f\in\mathcal{L}(V,W)[/ilmath] we have [ilmath]\text{Dim}(\text{Ker}(f))+\text{Dim}(\text{Im}(f))=\text{Dim}(V)[/ilmath]
Computing the homology groups:
- [ilmath]H_0:=Z_0/B_0=\text{Ker}(\partial_0)/\text{Im}(\partial_1)[/ilmath]
- Computing [ilmath]\text{Ker}(\partial_0)[/ilmath] (result: [ilmath]\text{Ker}(\partial_0)=C_0[/ilmath])
- By definition, [ilmath]\partial_0:[a_0]\mapsto 0[/ilmath], so everything in the domain of [ilmath]\partial_0[/ilmath] is in the kernel!
- Thus [ilmath]Z_0=C_0[/ilmath]
- Computing [ilmath]\text{Im}(\partial_1)[/ilmath]
- It is clear from the rank plus nullity theorem mentioned above that we should have [ilmath]\text{Dim}(\text{Ker}(\partial_1))+\text{Dim}(\text{Im}(\partial_1))=4[/ilmath] and we'll need to compute the kernel of [ilmath]\partial_1[/ilmath] for [ilmath]H_1[/ilmath] anyway.
- See computing the kernel of [ilmath]\partial_1[/ilmath] below
- The dimension of the kernel is [ilmath]2[/ilmath] so the dimension of the image is [ilmath]2[/ilmath] also!
- [ilmath]H_0=\langle x,y,z\rangle/\langle y-x, z-y\rangle\ (\cong\mathbb{Z}\ ?)[/ilmath] (although surely there are other choices for [ilmath]\langle y-x, z-y\rangle[/ilmath])
- It is clear from the rank plus nullity theorem mentioned above that we should have [ilmath]\text{Dim}(\text{Ker}(\partial_1))+\text{Dim}(\text{Im}(\partial_1))=4[/ilmath] and we'll need to compute the kernel of [ilmath]\partial_1[/ilmath] for [ilmath]H_1[/ilmath] anyway.
- Computing [ilmath]\text{Ker}(\partial_0)[/ilmath] (result: [ilmath]\text{Ker}(\partial_0)=C_0[/ilmath])
- [ilmath]H_1:=Z_1/B_1:=\text{Ker}(\partial_1)/\text{Im}(\partial 2)[/ilmath]
- Computing [ilmath]\text{Ker}(\partial_1)[/ilmath] has already been done below
- Computing [ilmath]\text{Im}(\partial_2)[/ilmath] is easy, it's [ilmath]0[/ilmath] - the trivial group
- Thus:
- [ilmath]H_1\cong\text{Ker}(\partial_1)=\langle a+b+c,a+b+d\rangle\cong\mathbb{Z}^2[/ilmath]
Computing the kernel of [ilmath]\partial_1[/ilmath]
To do this we wish to solve:
- [ilmath]\begin{pmatrix}-1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1\end{pmatrix}\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}[/ilmath], which basically amounts to rrefing [ilmath]\begin{pmatrix}-1 & 0 & 1 & 1 & 0\\ 1 & -1 & 0 & 0 & 0\\ 0 & 1 & -1 & -1 & 0\end{pmatrix}[/ilmath] giving us [ilmath]\begin{pmatrix}1 & 0 & -1 & -1 & 0\\ 0 & 1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 &0\end{pmatrix}[/ilmath]
- Yielding: [ilmath]\alpha=\gamma+\delta[/ilmath] and [ilmath]\beta=\gamma+\delta[/ilmath]. Let [ilmath]\gamma:=s[/ilmath] and then:
- [ilmath]\alpha=s+t[/ilmath] and [ilmath]\beta=s+t[/ilmath], vectorially:
- If [ilmath]\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}=s\begin{pmatrix}1\\1\\1\\0 \end{pmatrix}+t\begin{pmatrix}1\\1\\0\\1 \end{pmatrix}[/ilmath] then [ilmath]\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}\in\text{Ker}(\partial_1)[/ilmath]
- This makes perfect sense, it means (informally) [ilmath]s[/ilmath] times through [ilmath](a\rightarrow b\rightarrow c)[/ilmath] and [ilmath]t[/ilmath] times through [ilmath]a\rightarrow b\rightarrow d[/ilmath], which goes [ilmath]s+t[/ilmath] times through both [ilmath]a[/ilmath] and [ilmath]b[/ilmath] all together!
- Clearly the dimension is 2.
- Yielding: [ilmath]\alpha=\gamma+\delta[/ilmath] and [ilmath]\beta=\gamma+\delta[/ilmath]. Let [ilmath]\gamma:=s[/ilmath] and then:
Computing the image of [ilmath]\partial_1[/ilmath]
Take the following system:
- [ilmath]\begin{pmatrix}-1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1\end{pmatrix}\begin{pmatrix}\alpha\\\beta\\\gamma\\\delta\end{pmatrix}=\begin{pmatrix}x\\y\\z\end{pmatrix}[/ilmath]
Looking at it we see that the first column add the second column is minus the third, so the colspan is clearly 3. We can write this as the subset of [ilmath]\mathbb{Z}^3[/ilmath] spanned by:
- [ilmath]\langle y-x,z-y\rangle[/ilmath]
Dealing with generated spaces
I don't like being so informal, hence "rings and modules"