Difference between revisions of "Characteristic property of the tensor product/Statement"

From Maths
Jump to: navigation, search
m (Typo and category)
m (Statement: typo)
 
Line 16: Line 16:
  
 
-->Let {{M|\mathbb{F} }} be a [[field]] and let {{M|\big((V_i,\mathbb{F})\big)_{i\eq 1}^k}} be a family of ''[[dimension (vector space)|finite dimensional]]'' [[vector spaces]] over {{M|\mathbb{F} }}. Let {{M|(W,\mathbb{F})}} be another vector space over {{M|\mathbb{F} }}. Then{{rITSMJML}}:
 
-->Let {{M|\mathbb{F} }} be a [[field]] and let {{M|\big((V_i,\mathbb{F})\big)_{i\eq 1}^k}} be a family of ''[[dimension (vector space)|finite dimensional]]'' [[vector spaces]] over {{M|\mathbb{F} }}. Let {{M|(W,\mathbb{F})}} be another vector space over {{M|\mathbb{F} }}. Then{{rITSMJML}}:
* If {{M|A:V_1\times\cdots\times V_k\rightarrow W}} be any [[multilinear map]]
+
* If {{M|A:V_1\times\cdots\times V_k\rightarrow W}} is any [[multilinear map]]
 
** there exists a unique [[linear map]], {{M|\overline{A}:V_1\otimes\cdots\otimes V_k\rightarrow X}} such that:
 
** there exists a unique [[linear map]], {{M|\overline{A}:V_1\otimes\cdots\otimes V_k\rightarrow X}} such that:
 
*** {{M|\overline{A}\circ p\eq A}} (that is: the diagram on the right [[commutative diagram|commutes]])
 
*** {{M|\overline{A}\circ p\eq A}} (that is: the diagram on the right [[commutative diagram|commutes]])
 
Where {{M|p:V_1\times\cdots\times V_k\rightarrow V_1\otimes\cdots\otimes V_k}} by {{M|p:(v_1,\ldots,v_k)\mapsto v_1\otimes\cdots\otimes v_k}} (and is {{m|p}} is [[multilinear map|multilinear]]) {{#if:{{{full|}}}|(see '''claim 1''' for the proof of this)|}}
 
Where {{M|p:V_1\times\cdots\times V_k\rightarrow V_1\otimes\cdots\otimes V_k}} by {{M|p:(v_1,\ldots,v_k)\mapsto v_1\otimes\cdots\otimes v_k}} (and is {{m|p}} is [[multilinear map|multilinear]]) {{#if:{{{full|}}}|(see '''claim 1''' for the proof of this)|}}
 
<div style="clear:both;"></div><noinclude>
 
<div style="clear:both;"></div><noinclude>
 +
 
==References==
 
==References==
 
<references/>
 
<references/>
 
{{Theorem Of|Linear Algebra|Abstract Algebra}}
 
{{Theorem Of|Linear Algebra|Abstract Algebra}}
 
</noinclude>
 
</noinclude>

Latest revision as of 22:07, 20 December 2016

Notice: this page is supposed to be transcluded, use full=true to show claims and extra things

Statement

[ilmath]\xymatrix{ V_1\times\cdots\times V_k \ar@2{->}[rr]^-A \ar@2{->}[d]_p & & W \\ V_1\otimes\cdots\otimes V_k \ar@{.>}[urr]_-{\overline{A} } }[/ilmath]
Diagram of the situation, the double-arrows is multilinear, the other is linear
Let [ilmath]\mathbb{F} [/ilmath] be a field and let [ilmath]\big((V_i,\mathbb{F})\big)_{i\eq 1}^k[/ilmath] be a family of finite dimensional vector spaces over [ilmath]\mathbb{F} [/ilmath]. Let [ilmath](W,\mathbb{F})[/ilmath] be another vector space over [ilmath]\mathbb{F} [/ilmath]. Then[1]:
  • If [ilmath]A:V_1\times\cdots\times V_k\rightarrow W[/ilmath] is any multilinear map
    • there exists a unique linear map, [ilmath]\overline{A}:V_1\otimes\cdots\otimes V_k\rightarrow X[/ilmath] such that:
      • [ilmath]\overline{A}\circ p\eq A[/ilmath] (that is: the diagram on the right commutes)

Where [ilmath]p:V_1\times\cdots\times V_k\rightarrow V_1\otimes\cdots\otimes V_k[/ilmath] by [ilmath]p:(v_1,\ldots,v_k)\mapsto v_1\otimes\cdots\otimes v_k[/ilmath] (and is [ilmath]p[/ilmath] is multilinear)

References

  1. Introduction to Smooth Manifolds - John M. Lee