Difference between revisions of "The zero-to-the-power-of-zero problem"

From Maths
Jump to: navigation, search
(Saving work)
 
m
 
Line 1: Line 1:
 +
{{Stub page|grade=A|msg=Oh wow I really didn't add much to this page! It needs work! At least:
 +
* Limit argument
 +
* [[Geometric distribution]] when {{M|p\eq 1}} - calculating the [[Expectation]] in this case involves {{M|0^0\eq 1}}
 +
[[User:Alec|Alec]] ([[User talk:Alec|talk]]) 21:09, 30 November 2017 (UTC)}}
 
{{Infobox
 
{{Infobox
 
|title=The {{M|0^0}} problem
 
|title=The {{M|0^0}} problem

Latest revision as of 21:09, 30 November 2017

Stub grade: A
This page is a stub
This page is a stub, so it contains little or minimal information and is on a to-do list for being expanded.The message provided is:
Oh wow I really didn't add much to this page! It needs work! At least: Alec (talk) 21:09, 30 November 2017 (UTC)
The [ilmath]0^0[/ilmath] problem
[ilmath]0^0[/ilmath]

Problem

For a detailed list of where the problem matters or occurs on this site see Category for such problemsEditors:[Note 1]

Tentative solutions

Current thinking

Approach 1: [ilmath]x^y\eq e^{y\text{ln}(x)} [/ilmath]

Using the extended real values ([ilmath]\mathbb{R}\cup\{-\infty,+\infty\} [/ilmath])[Note 2]

Notes

  1. editors see/use Template:0^0 problem
  2. Where we conventionally think of [ilmath]+\infty[/ilmath] as some sort of

References