Difference between revisions of "Complete metric space"
From Maths
(Created page with "==Definition== Given a metric space {{M|(X,d)}}, if every Cauchy sequence converges to a limit within {{M|X}} then {{M|X}} is a ''complete metric space''<...") |
m (→Definition) |
||
Line 1: | Line 1: | ||
==Definition== | ==Definition== | ||
− | Given a [[Metric space|metric space]] {{M|(X,d)}}, if every [[Cauchy sequence]] converges to a limit within {{M|X}} then {{M|X}} is a ''complete metric space''<ref name="FA">Functional Analysis - George Bachman and Lawrence Narici</ref> | + | Given a [[Metric space|metric space]] {{M|(X,d)}}, if every [[Cauchy sequence]] converges to a [[limit (sequence)]] within {{M|X}} then {{M|X}} is a ''complete metric space''<ref name="FA">Functional Analysis - George Bachman and Lawrence Narici</ref><ref name="KMAPI">Analysis - Part I: Elements - Krzysztof Maurin</ref>. That is to say: |
+ | * Given a [[sequence]] {{M|1=(x_n)_{n=1}^\infty}}, it converging to a limit {{M|x\in X}} or being a [[Cauchy sequence]] are equivalent. Or in symbols: | ||
+ | * {{M|1=\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(x_n,x)]\iff\forall\epsilon>0\exists N\in\mathbb{N}\forall n,m\in\mathbb{N}[n\ge m>N\implies d(x_n,x_m)<\epsilon]}} | ||
==Examples== | ==Examples== |
Latest revision as of 15:36, 24 November 2015
Definition
Given a metric space [ilmath](X,d)[/ilmath], if every Cauchy sequence converges to a limit (sequence) within [ilmath]X[/ilmath] then [ilmath]X[/ilmath] is a complete metric space[1][2]. That is to say:
- Given a sequence [ilmath](x_n)_{n=1}^\infty[/ilmath], it converging to a limit [ilmath]x\in X[/ilmath] or being a Cauchy sequence are equivalent. Or in symbols:
- [ilmath]\forall\epsilon>0\exists N\in\mathbb{N}\forall n\in\mathbb{N}[n>N\implies d(x_n,x)]\iff\forall\epsilon>0\exists N\in\mathbb{N}\forall n,m\in\mathbb{N}[n\ge m>N\implies d(x_n,x_m)<\epsilon][/ilmath]
Examples
Complete space
- Obviously the [ilmath]\mathbb{R} [/ilmath] (reals) are complete, considered with the usual topology induced by the Absolute value metric
Incomplete space
- A good example is the space of fractions, [ilmath]\mathbb{Q} [/ilmath] considered with the Absolute value metric again, there are rational sequences which converge to say, [ilmath]\sqrt{2} [/ilmath], and [ilmath]\sqrt{2}\notin\mathbb{Q} [/ilmath]
- A better example is the space of continuous functions on an interval, [ilmath]\mathcal{C}[a,b][/ilmath] and the distance function:
- [ilmath]d(f,g)=\sqrt{\int^b_a\vert f(x)-g(x)\vert dx}[/ilmath] for [ilmath]f,g\in\mathcal{C}[a,b][/ilmath]
- Let [ilmath]a=-1[/ilmath] and [ilmath]b=1[/ilmath] (WLOG)
- We can then see that the sequence of functions [ilmath](f_n)_{n=1}^\infty[/ilmath] where each [ilmath]f_n:[-1,1]\rightarrow[0,1]\subset\mathbb{R} [/ilmath] given by:
- [ilmath]f_n(x)=\left\{\begin{array}{lr}0 & \text{for }x\in[-1,0] \\ nx &\text{for }x\in(0,\frac{1}{n}] \\ 1 & \text{otherwise}\end{array}\right.[/ilmath]
- Has a limit (note that: [ilmath]\lim_{n\rightarrow\infty}(f_n)=f[/ilmath] with [ilmath]f(x)=\left\{\begin{array}{lr} 0 & \text{for }x\in[-1,0] \\ 1 & \text{otherwise}\end{array}\right.[/ilmath] and that this [ilmath]f[/ilmath] isn't continuous (in [ilmath](\mathbb{R},\vert\cdot\vert)[/ilmath]) anyway!)
- and that limit, [ilmath]f[/ilmath] isn't continuous, this we have shown that [ilmath]\mathcal{C}[-1,1][/ilmath] isn't complete. (and by translation/scaling as needed, [ilmath]\mathcal{C}[a,b][/ilmath] isn't complete)