Difference between revisions of "Pre-measure/Properties in common with measure"

From Maths
Jump to: navigation, search
m (Reverted edits by JessicaBelinda133 (talk) to last revision by Alec)
m (Fixing typo)
 
Line 10: Line 10:
 
{{End Proof}}{{End Theorem}}
 
{{End Proof}}{{End Theorem}}
 
{{Begin Inline Theorem}}
 
{{Begin Inline Theorem}}
* If {{M|A\subseteq B}} and {{M|\mu_0(A)<\infty}} then {{M|\mu_0(B-A)=\mu_0(B)-\mu(A)}}
+
* If {{M|A\subseteq B}} and {{M|\mu_0(A)<\infty}} then {{M|1=\mu_0(B-A)=\mu_0(B)-\mu(A)}}
 
{{Begin Inline Proof}}
 
{{Begin Inline Proof}}
 
{{Todo|Be bothered, note the significance of the finite-ness of {{M|A}} - see [[Extended real value]]}}
 
{{Todo|Be bothered, note the significance of the finite-ness of {{M|A}} - see [[Extended real value]]}}

Latest revision as of 22:30, 30 March 2016

\newcommand{\bigudot}{ \mathchoice{\mathop{\bigcup\mkern-15mu\cdot\mkern8mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}}{\mathop{\bigcup\mkern-13mu\cdot\mkern5mu}} }\newcommand{\udot}{\cup\mkern-12.5mu\cdot\mkern6.25mu\!}\require{AMScd}\newcommand{\d}[1][]{\mathrm{d}^{#1} }
[Expand]

  • Finitely additive: if A\cap B=\emptyset then \mu_0(A\udot B)=\mu_0(A)+\mu_0(B)

[Expand]

  • Monotonic: [Note 1] if A\subseteq B then \mu_0(A)\le\mu_0(B)

[Expand]

  • If A\subseteq B and \mu_0(A)<\infty then \mu_0(B-A)=\mu_0(B)-\mu(A)

[Expand]

  • Strongly additive: \mu_0(A\cup B)=\mu_0(A)+\mu_0(B)-\mu_0(A\cap B)

[Expand]

  • Subadditive: \mu_0(A\cup B)\le\mu_0(A)+\mu_0(B)

Notes

  1. Jump up Sometimes stated as monotone (it is monotone in Measures, Integrals and Martingales in fact!)

References